Lecture 10: A Galois version of the Bernstein Center

Anne-Marie Aubert

Institut de Mathématiques de Jussieu - Paris Rive Gauche

NSF-CBMS Conference: Representations of *p*-adic groups and noncommutative geometry

St John's University, Queens, NY

June 9-13, 2025

The cuspidality conjecture

The local Langlands correspondence restricts to a bijection

$$\operatorname{Irr}_{\operatorname{cusp}}(G) \stackrel{1-1}{\longleftrightarrow} \Phi_{\operatorname{e,cusp}}(G).$$

State of art

The cuspidality conjecture is known to hold for all the Levi subgroups (including the groups themselves) of

- general linear groups and split classical p-adic groups [Moussaoui, 2017],
- inner forms of linear groups and of special linear groups, and quasi-split unitary p-adic groups [A-Moussaoui-Solleveld, 2018],
- the p-adic group G_2 [A-Xu, 2022],
- pure inner forms of quasi-split classical p-adic groups [A-Moussaoui-Solleveld, 2022].

Another example of extended quotient

 G^{\vee} and L^{\vee} complex dual groups of G, L and $\Phi_{\mathrm{e,cusp}}(L)$ the set of L^{\vee} -conjugacy classes of cuspidal enhanced Langlands parameters for L. The group $W(L^{\vee}) := \mathrm{N}_{G^{\vee}}(L^{\vee})/L^{\vee}$ acts on $\Phi_{\mathrm{e,cusp}}(L)$ and we can form the panoramic (spectral) Galois extended quotient:

$$\Phi_{e, \text{cusp}}(L) /\!/ W(L^{\vee}).$$

Coniecture

The local Langlands correspondence induces a bijection

$$\operatorname{Irr}_{\operatorname{cusp}}(L)/\!/W(L) \stackrel{1-1}{\longleftrightarrow} \Phi_{\operatorname{e,cusp}}(L)/\!/W(L^{\vee})$$

for any Levi subgroup L of G.

Slogan: The local Langlands correspondence matches the panoramic extended quotients.

Remark

The groups W(L) and $W(L^{\vee})$ are canonically isomorphic.

Property C(L)

There is a bijection $\mathfrak{L}_L \colon \mathrm{Irr}_{\mathrm{cusp}}(L) \stackrel{1-1}{\longrightarrow} \Phi_{\mathrm{e,cusp}}(L)$ such that

$$\mathfrak{L}_L \circ \mathrm{Ad}(w) = \mathrm{Ad}(w^{\vee}) \circ \mathfrak{L}_L$$
 for any $w \in W_G(L)$

where $w \mapsto w^{\vee}$ denotes the canonical bijection $W(L) \to W(L^{\vee})$.

Remark

(Cuspidality conjecture) \Leftrightarrow (Property C(G) is satisfied with $\mathfrak{L}_G = \mathrm{LLC}$).

A Langlands correspondence between panoramic extended quotients:

If Property C(L) is satisfied for L a Levi subgroup of G, then \mathfrak{L}_L matches the panoramic extended quotients, i.e., induces a bijection

$$\operatorname{Irr}_{\operatorname{cusp}}(L)/\!/W_G(L) \stackrel{1-1}{\longleftrightarrow} \Phi_{\operatorname{e,cusp}}(L)/\!/W_{G^{\vee}}(L^{\vee}).$$

Theorem [A-Moussaoui-Solleveld, 2018]

For any G, there is a bijection:

$$\Phi_{\mathrm{e}}(G) \overset{1-1}{\longleftrightarrow} \bigsqcup_{L \in \mathfrak{L}(G)} (\Phi_{\mathrm{e,cusp}}(L) /\!/ W_{G^{\vee}}(L^{\vee}))_{L_{\frac{\mu}{2}}}.$$

Theorem [Solleveld, 2020]

For any G, there is a bijection:

$$\operatorname{Irr}(G) \stackrel{1-1}{\longleftrightarrow} \bigsqcup_{L \in \mathfrak{L}(G)} (\operatorname{Irr}_{\operatorname{cusp}}(L) // W_G(L))_{\natural}.$$

Corollary

If Property C(L) is satisfied for all the Levi subgroups L of G (including L=G), and if the bijection \mathfrak{L}_L is "compatible with the twists", then we get a bijection

$$\operatorname{Irr}(G) \stackrel{1-1}{\longleftrightarrow} \Phi_{\operatorname{e}}(G).$$

Notation

- $\mathfrak{X}_{nr}(L^{\vee}) := \{\zeta \colon W_F/I_F \to Z_{L^{\vee}}^{\circ}\}$, which acts on the set of cuspidal enhanced L-parameters for L.
- $\mathfrak{s}^{\vee} := [L^{\vee} \rtimes W_F, (\varphi_{\mathrm{cusp}}, \rho_{\mathrm{cusp}})]_{G^{\vee}}$ the G^{\vee} -conjugacy class of $(L^{\vee} \rtimes W_F, \mathfrak{X}_{\mathrm{nr}}(L^{\vee}) \cdot (\varphi_{\mathrm{cusp}}, \rho_{\mathrm{cusp}}))$, where $(\varphi_{\mathrm{cusp}}, \rho_{\mathrm{cusp}})$ is a cuspidal enhanced L-parameter for L Let $\mathfrak{B}^{\vee}(G)$ denote the set of such \mathfrak{s}^{\vee} .

$\mathsf{Theorem}\ [\mathsf{A} ext{-}\mathsf{Moussaoui} ext{-}\mathsf{Solleveld}]$

Let G be an arbitrary p-adic reductive group.

The set $\Phi_{\rm e}(G)$ of G^{\vee} -conjugacy classes of enhanced L-parameters for G is partitioned into series à la Bernstein as

$$\Phi_{\mathbf{e}}(G) = \bigsqcup_{\mathfrak{s}^{\vee} \in \mathfrak{B}^{\vee}(G)} \Phi_{\mathbf{e}}^{\mathfrak{s}^{\vee}}(G) \tag{1}$$

where $\Phi_{\rm e}^{\mathfrak{s}^{\vee}}(G)$: the fiber of \mathfrak{s}^{\vee} under the map ${\rm Sc.}$

Moreover, for every $\mathfrak{s}^{\vee} \in \mathfrak{B}^{\vee}(G)$, we have

$$\Phi_{\mathbf{e}}^{\mathfrak{s}^{\vee}}(G) \stackrel{1-1}{\longleftrightarrow} (\Phi_{\mathbf{e}}^{\mathfrak{s}_{\mathbb{C}^{\vee}}^{\vee}}(L)/\!/W^{\mathfrak{s}^{\vee}})_{\iota_{\natural}}. \tag{2}$$

$\mathsf{Theorem}$

If G is

- an inner form of $GL_n(F)$ [A-Baum-Plymen-Solleveld, 2019],
- the exceptional group of type G₂ [A-Xu, 2022],
- a pure inner form of a quasi-split classical p-adic group [A-Moussaoui-Solleveld, 2022],

then, for every $\mathfrak{s} = [L, \sigma]_G \in \mathfrak{B}(G)$ and for $\mathfrak{s}^{\vee} := [L^{\vee} \rtimes W_F, \mathrm{LLC}^L(\sigma)]_{G^{\vee}}$,

$$\operatorname{Irr}^{\mathfrak s}(G) \overset{1-1}{\longleftrightarrow} \operatorname{Irr}^{\mathfrak s_{L}}(L) /\!/ W^{\mathfrak s} \overset{1-1}{\longleftrightarrow} \Phi_{\operatorname{e}}^{\mathfrak s_{L}^{\vee}}(L) /\!/ W^{\mathfrak s^{\vee}} \overset{1-1}{\longleftrightarrow} \Phi_{\operatorname{e}}^{\mathfrak s^{\vee}}(G) \quad \text{(3)}$$

coincides with the LLC, and the following diagram is commutative

$$\operatorname{Irr}^{\mathfrak{s}}(G) \xrightarrow{\operatorname{LLC}} \Phi_{\operatorname{e}}^{\mathfrak{s}^{\vee}}(G)$$

$$\operatorname{Sc} \qquad \qquad \downarrow_{\operatorname{Sc}}$$

$$\operatorname{Irr}^{\mathfrak{s}_{L}}(L) \xrightarrow{\operatorname{LLC}} \Phi_{\operatorname{e}}^{\mathfrak{s}_{L^{\vee}}^{\vee}}(L)$$

Theorem [A-Moussaoui-Solleveld, 2022]

If G a classical group (including the group $\operatorname{GSpin}_n(F)$), then the bijection

$$\operatorname{Irr}(G) = \bigsqcup_{\mathfrak{s} \in \mathfrak{B}(G)} \operatorname{Irr}^{\mathfrak{s}}(G) \, \stackrel{1-1}{\longleftrightarrow} \, \bigsqcup_{\mathfrak{s}^{\vee} \in \mathfrak{B}^{\vee}(G)} \Phi_{\operatorname{e}}^{\mathfrak{s}^{\vee}}(G) = \Phi_{\operatorname{e}}(G)$$

induced by (3) coincides with the local Langlands correspondence that was constructed by Arthur.

Theorem [A-Moussaoui-Solleveld, 2018]

For every $\mathfrak{s} \in \mathfrak{B}^{\vee}(G)$, there exist a (twisted) extended affine Hecke algebra $\mathcal{H}(G^{\vee},\mathfrak{s}^{\vee})$ such that

$$\Phi_{\operatorname{e}}^{\mathfrak s^\vee}(\mathit{G}) \overset{1-1}{\longleftrightarrow} \ \operatorname{Irr}(\mathcal H(\mathit{G}^\vee,\mathfrak s^\vee)).$$

Theorem: a categorical local Langlands correspondence

- If G an inner form of $GL_n(F)$ or a pure inner form of a quasi-split classical p-adic group [A.-Moussaoui-Solleveld], or
- ② if G is the group G_2 with $p \neq 2,3$ [A.-Xu]

then, for every $\mathfrak{s} \in \mathfrak{B}(G)$, we have

$$\mathfrak{R}^{\mathfrak{s}}(\mathsf{G}) \overset{\mathsf{Morita}}{\sim} \mathrm{Mod}(\mathcal{H}(\mathsf{G}^{\vee}, \mathfrak{s}^{\vee}))$$

where

$$\mathfrak{s} \stackrel{\mathrm{LLC}^{L}}{\longleftrightarrow} \mathfrak{s}^{\vee}.$$

Hence, we have a categorical local Langlands correspondence:

$$\mathfrak{R}(G) \overset{\mathsf{Morita}}{\sim} \prod_{\mathfrak{s}^ee \in \mathfrak{B}^ee (G)} \mathrm{Mod}(\mathcal{H}(G^ee, \mathfrak{s}^ee)).$$

Thank you very much for your attention!

From Staten Island (Oil painting 2016).