Lecture 3: The Bernstein Center

Anne-Marie Aubert

Institut de Mathématiques de Jussieu - Paris Rive Gauche

NSF-CBMS Conference: Representations of *p*-adic groups and noncommutative geometry

St John's University, Queens, NY

June 9-13, 2025

Notation

- G: a p-adic group
- L Levi factor of a parabolic subgroup P of G
- $\Re(G)$: the category of all smooth representations of G
- $\mathfrak{X}_{nr}(L)$: the group of unramified characters of L
- ullet σ an irreducible supercuspidal smooth representation of L.

A few recollection from Lecture 1:

Parabolic induction

The inflation of a representation σ of L to P is the unique representation of P which restricts to σ on L and trivial on U; we denote it as $\inf_{L}^{P}(\sigma)$. The parabolic induction functor is the following composition

$$i_{L,P}^G \colon \mathfrak{R}(L) \xrightarrow{\inf_L^P} \mathfrak{R}(P) \xrightarrow{\operatorname{Ind}_P^G} \mathfrak{R}(G).$$

Parabolic restriction

Let U be the unipotent radical of P. The parabolic restriction functor, or Jacquet (restriction) functor, is the following composition

$$r_{L,P}^{G} \colon \mathfrak{R}(G) \xrightarrow{\operatorname{Res}_{L}^{P}} \mathfrak{R}(P) \xrightarrow{U\text{-coinvariants}} \mathfrak{R}(L).$$

Definition

A smooth representation π of G is supercuspidal if $r_{L,P}^G(\pi) = 0$, for any proper parabolic subgroup P of G.

Proposition

Let π be a smooth representation of G. The following conditions are equivalent

- (1) the representation π is supercuspidal
- (2) the representation π not a subquotient of any proper parabolically induced representation.
- (3) every matrix coefficient of π has compact modulo center support.

Anne-Marie Aubert Institut de Mathé Lecture 3: The Bernstein Center

Theorem [Harish-Chandra]

Every smooth irreducible representation π of G occurs as an irreducible component of a parabolically induced representation $\mathrm{i}_{L,P}^G(\sigma)$, where P is a parabolic subgroup of G with Levi factor L and σ is supercuspidal irreducible smooth representation of L.

The *G*-conjugacy class $(L, \sigma)_G$ of (L, σ) is uniquely determined and is called the supercuspidal support of π , it is denoted by $Sc(\pi)$.

Bernstein's idea: grouping together "close" supercuspidal suppports

Definition

Let $\sigma, \sigma' \in \operatorname{Irr}(L)$. We say that σ and σ' are close if $\sigma' = \chi \cdot \sigma$ for some $\chi \in \mathfrak{X}_{\operatorname{nr}}(L)$.

Notation

We denote by

- \$\sigma\$ the *G*-conjugacy class of the pair $(L, \mathfrak{X}_{nr}(L) \cdot \sigma)$. We write $\mathfrak{s} = [L, \sigma]_G$ (We set $\mathfrak{s}_L := (L, \mathfrak{X}_{nr}(L) \cdot \sigma)_L$.)
- $\mathfrak{B}(G)$ the set of such classes \mathfrak{s} . It is countable infinite.

Definition

Let $\mathfrak{R}^{\mathfrak{s}}(G)$ be the full subcategory of $\mathfrak{R}(G)$ whose objects are the representations (π, V) such that every G-subquotient of π has its supercuspidal support contained in \mathfrak{s} .

Theorem [Bernstein]

The category $\mathfrak{R}(G)$ is a direct product:

$$\mathfrak{R}(G) = \prod_{\mathfrak{s} \in \mathfrak{B}(G)} \mathfrak{R}^{\mathfrak{s}}(G)$$

of the full subcategories $\mathfrak{R}^{\mathfrak{s}}(G)$

- What do the subcategories $\mathfrak{R}^{\mathfrak{s}}(G)$ look like? Is always $\mathfrak{R}^{\mathfrak{s}}(G)$ the module category of an explicit algebra (as it is for $\mathfrak{s} = [T, \text{triv}]_G$)?
- 2 Can we classify $Irr^{\mathfrak{s}}(G)$?
- Mow can we describe unitary/tempered/square-integrable representations in $\mathfrak{R}^{\mathfrak{s}}(G)$?
- How reflects the Bernstein decomposition in other settings (e.g., noncommutative geometry, Langlands correspondence)?

The group $\it M$

Let $\mathfrak{s} = [L, \sigma]_G \in \mathfrak{B}(G)$. The group $N_G(L)$ acts on $\mathfrak{R}(L)$ by

$$(n\cdot\sigma)(I):=\sigma(n^{-1}In).$$

Set $\mathcal{O} := \mathfrak{X}_{nr}(L) \cdot \sigma$. We define

$$W^{\mathfrak s}:=\mathrm{N}_G([L,\sigma]_L)/L=\{n\in\mathrm{N}_G(L):n \text{ stabilzes }\mathcal O\}/L.$$

Proposition

We have

$$W^{\mathfrak{s}} = W_0^{\mathfrak{s}} \rtimes \Gamma^{\mathfrak{s}}$$

where $W_0^{\mathfrak{s}}$ is a finite Weyl group (with roots system denoted by $R^{\mathfrak{s}}$) and $\Gamma^{\mathfrak{s}}$ is a finite group (sending positive roots in $R^{\mathfrak{s}}$ to positive roots).

Center of $\mathfrak{R}^{\mathfrak{s}}(G)$

For $\mathfrak{s} = [L, \sigma]_G$, let $\mathbb{C}[\mathcal{O}]$ be the ring of regular functions on \mathcal{O} (viewed as a complex torus).

The center of $\mathfrak{R}^{\mathfrak{s}}(G)$ is

$$\mathfrak{Z}(\mathfrak{R}^{\mathfrak{s}}(G)) = \mathbb{C}[\mathcal{O}]^{W^{\mathfrak{s}}}.$$

The Hecke algebra of G

We fix a Haar measure on G, and recall that $\mathcal{H}(G)$ denotes the space of locally constant, compactly supported functions $f: G \to \mathbb{C}$, that we view as a \mathbb{C} -algebra via convolution relative to the Haar measure. We refer to $\mathcal{H}(G)$ as the Hecke algebra of G.

Idempotented algebras

Let A be an associative algebra. Let E(A) denotes the set of idempotents in A (i.e. the elements $e \in A$ such that $e^2 = e$). We define a partial order on E(A) by setting

$$e_1 \leq e_2$$
 if $e_1 A e_1 \subset e_2 A e_2$.

For every pair of idempotents $e_1 \le e_2$, we have an inclusion of algebras $e_1 A e_1 \subset e_2 A e_2$.

The algebra A is said to be idempotented if A is the inductive limit of algebras eAe for $e \in E(A)$ ranging over the ordered set of idempotents of A.

Remark

If A is unital, the unit of A is obviously the maximal element of E(A), and therefore A is idempotented.

Definition

Let A be an idempotented algebra. A A-module M is said to be nondegenerate if

$$M = \bigcup_{e \in E(A)} eM.$$

Motation

For every compact open subgroup K of G, let $e_K \in \mathcal{H}(G)$ be the function defined

$$e_{K}(x) := \begin{cases} \frac{1}{\operatorname{vol}(K)} & \text{if } x \in K \\ 0 & \text{if } x \in G, \ x \notin K. \end{cases}$$

Remark

A $\mathcal{H}(G)$ -module M is nondegenerate if and only if

$$M = \bigcup_{K} e_{K} M$$

the union ranging over all compact open subgroups K of G, for every idempotent $e \in E(\mathcal{H}(G))$ is dominated by some e_K .

Proposition

The category $\mathfrak{R}(G)$ of smooth representations of G is equivalent to the category of of nondegenerate $\mathcal{H}(G)$ -modules.

The Bernstein decomposition of $\mathcal{H}(G)$

By letting G act on $\mathcal{H}(G)$ by left translation, we obtain a decomposition

$$\mathcal{H}(G) = \bigoplus_{\mathfrak{s} \in \mathfrak{B}(G)} \mathcal{H}(G)^{\mathfrak{s}}.$$

The spaces $\mathcal{H}(G)^{\mathfrak{s}}$ are two-sided ideals of $\mathcal{H}(G)$, that are Morita equivalent to unital, Noetherian algebras of finite global dimension, and $\mathfrak{R}(\mathcal{H}(G)^{\mathfrak{s}}) \cong \mathfrak{R}^{\mathfrak{s}}(G)$.

Proposition [Bushnell-Kutzko]

For every $\mathfrak{s} \in \mathfrak{B}(G)$, there exists an idempotent $e^{\mathfrak{s}} \in \mathcal{H}(G)$ sucth that

- $\mathcal{H}(G)^{\mathfrak{s}} = \mathcal{H}(G)e^{\mathfrak{s}}\mathcal{H}(G)$
- $\bullet \ \mathfrak{R}^{\mathfrak{s}}(G) \cong \mathfrak{R}(e^{\mathfrak{s}}\mathcal{H}(G)e^{\mathfrak{s}}).$

Theorem [Crisp]

We have

$$\mathrm{H}(\mathfrak{R}_\mathrm{f}(\mathit{G})) \simeq \mathrm{H}(\mathcal{H}(\mathit{G}))$$

where the right-hand side is the Hochschild and cyclic homology of the Hecke algebra of G.

Proof

For A a Noetherian algebra of finite global dimension, Keller proved in ["On the cyclic homology of exact categories", J. Pure Appl. Algebra ${\bf 136}$: 1, (1999), 1–56] that

$$H(A) = H(\mathfrak{R}_f(A)).$$

The functor H commutes with direct sums and is Morita invariant, so the result follows.

Intertwining algebras

Let K be an open compact subgroup of G, and (λ, V) a smooth irred. rep. of K. Let $(\lambda^{\vee}, V^{\vee})$ be the contragredient of (λ, V) . We define $\mathcal{H}(G, \lambda)$ to be the space of compactly supported functions $f: G \to \operatorname{End}_G(V^{\vee})$ such that

$$f(kgk') = \lambda^{\vee}(k)f(g)\lambda^{\vee}(k')$$
, where $k, k' \in K$ and $g \in G$.

The convolution product gives $\mathcal{H}(G,\lambda)$ the structure of a unitary associative \mathbb{C} -algebra.

Notation

Let $e_{\lambda} \in \mathcal{H}(G)$ be the function defined by

$$e_{\lambda}(x) := \begin{cases} \frac{\dim \lambda}{\operatorname{vol}(K)} \operatorname{tr}(\lambda(x^{-1})) & \text{if } x \in K \\ 0 & \text{if } x \in G, x \notin K. \end{cases}$$

Then e_{λ} is idempotent, and $e_{\lambda} * \mathcal{H}(G) * e_{\lambda}$ is a sub-algebra of $\mathcal{H}(G)$ with unit e_{λ} . **Note:** If $\lambda = \mathrm{triv}$, then $e_{\lambda} = e_{K}$ and $\mathcal{H}(G, \lambda) = \mathcal{H}(G//K)$.

Anne-Marie Aubert Institut de Mathé Lecture 3: The Bernstein Center

Remark

There is a canonical isomorphism of unital algebras:

$$\mathcal{H}(G,\lambda)\otimes_{\mathbb{C}}\mathrm{End}(V)\simeq e_{\lambda}*\mathcal{H}(G)*e_{\lambda}.$$

Definition [Bushnell-Kutzko]

The pair (K, λ) is an \mathfrak{s} -type for G if the following property is satisfied

 λ occurs in the restriction of $\pi \in Irr(G)$ if and only if $\pi \in \mathfrak{s}$.

Example

For I an Iwahori subgroup of G, the pair (I, triv) is an \mathfrak{s} -type for $\mathfrak{s} = [T, \operatorname{triv}]_G$, where T a maximal torus of G, and we have $\mathfrak{R}^{\mathfrak{s}}(G) = \mathfrak{R}_I(G)$.

Theorem [Bushnell-Kutzko]

If (K, λ) is an \mathfrak{s} -type, then we can take $e^{\mathfrak{s}} = e_{\lambda}$.

nne-Marie Aubert Institut de Mathé Lecture 3: The Bernstein Center 14 / 17

The GL_n -case

Let $G = GL_n(F)$, $\mathfrak{s} = [L, \sigma]_G \in \mathfrak{B}(G)$ and $\mathfrak{s}_L := [L, \sigma] \in \mathfrak{B}(L)$. We have

$$L = \operatorname{GL}_{n_1}(F)^{e_1} \times \cdots \times \operatorname{GL}_{n_t}(F)^{e_r}$$
$$\sigma = \sigma_1^{\otimes e_1} \otimes \sigma_2^{\otimes e_2} \otimes \cdots \otimes \sigma_t^{\otimes e_t}$$

with $\sigma_1, \ldots, \sigma_t$ pairwise distinct (after unramified twist). Each representation σ_i is irreducible supercuspidal, and has a torsion number r_i : the order of the cyclic group of all those unramified characters $\chi \in \mathfrak{X}(\mathrm{GL}_{n_i}(F))$ for which $\sigma_i \otimes \chi \simeq \sigma_i$. The representation σ_i contains an \mathfrak{s}_i -type (K_i, λ_i) in $\mathrm{GL}_{n_i}(F)$ with $\mathfrak{s}_i = [\mathrm{GL}_{n_i}, \sigma_i]_{\mathrm{GL}_{n_i}(F)}$. Let

$$\mathcal{K}_L := \mathcal{K}_1^{e_1} imes \mathcal{K}_2^{e_2} imes \cdots imes \mathcal{K}_t^{e_t} \quad \text{and} \quad \lambda = \lambda_1^{\otimes e_1} \otimes \lambda_2^{\otimes e_2} \otimes \cdots \otimes \lambda_t^{\otimes e_t}.$$

Then (K_L, λ_L) is an \mathfrak{s}_L -type.

The GL_n -case (continued)

We have

$$W^{\mathfrak s}=W^{\mathfrak s}_0=\prod_{i=1}^t S_{e_i}.$$

Theorem [Bushnell-Kutzko]

Let $G := \mathrm{GL}_n(F)$. For every $\mathfrak{s} \in \mathfrak{B}(G)$, there exists an \mathfrak{s} -type (K, λ) and an isomorphism of unital \mathbb{C} -algebras

$$\mathcal{H}(\mathcal{G},\lambda)\simeqigotimes_{i=1}^t\mathcal{H}(\mathcal{S}_{e_i},q_{\mathcal{F}}^{r_i}),$$

where $\mathcal{H}(S_{e_i}, q_F^{r_i})$ is the Iwahori-Hecke algebra of $\mathrm{GL}_{e_i}(E_i)$ with E_i/F an unramified extension of degree r_i .

Moreover, these isomorphisms are compatible with twisting, parabolic induction, and preserving tempered representations.

Corollary

For $G = \mathrm{GL}_n(F)$, and every $\mathfrak{s} \in \mathfrak{B}(G)$, we have

$$\mathfrak{R}^{\mathfrak{s}}(\mathsf{G}) \overset{\mathsf{Morita}}{\sim} \operatorname{Mod} \left(\bigotimes_{i=1}^t \mathcal{H}(S_{e_i}, q_{\mathsf{F}}^{r_i}) \right).$$

Conclusion

The study of the category $\Re(\operatorname{GL}_n(F))$ reduces to that of categories of modules of affine Hecke algebras.

More generally, the study of the category of smooth representations of an arbitrary *p*-adic groups reduces to that of categories of modules of generalized affine Hecke algebras.

We will see more examples later.