Lecture 4: Extended quotients

Anne-Marie Aubert

Institut de Mathématiques de Jussieu - Paris Rive Gauche

NSF-CBMS Conference: Representations of *p*-adic groups and noncommutative geometry

St John's University, Queens, NY

June 9-13, 2025

Geometric extended quotient

Let X be a space and Γ a (finite) group acting on X. For $x \in X$, let $\Gamma_x \subset \Gamma$ be the fixator of x:

$$\Gamma_x := \{ \gamma \in \Gamma : \gamma \cdot x = x \}.$$

The quotient X/Γ of X by (the action of) Γ is the set Γ -orbits in X. We replace X by a bigger space \widetilde{X} on which Γ is still acting, and take the quotient of \widetilde{X} by Γ : the geometric extended quotient of X by Γ is the quotient

$$(X//\Gamma)_{\text{geo}} := \{(x, \gamma) : x \in X, \gamma \in \Gamma_x\}/\Gamma.$$

Notation

For $\gamma \in \Gamma$, we set

$$X^{\gamma} := \{ x \in X : \gamma \cdot x = x \},$$

and denote by $Z_{\Gamma}(\gamma)$ the centralizer of γ in Γ .

Remark

The geometric extended quotient is the disjoint union

$$(X//\Gamma)_{\mathrm{geo}} = \bigsqcup X^{\gamma}/\mathrm{Z}_{\Gamma}(\gamma)$$

where one γ is chosen in each Γ -conjugacy class.

Spectral extended quotient

Instead of elements of Γ_x , we can consider irred. repres. of Γ_x . The (spectral) extended quotient of X by Γ is the quotient

$$X//\Gamma := \{(x,\tau) : x \in X, \tau \in \operatorname{Irr}(\Gamma_x)\}/\Gamma.$$

The extended quotients $(X//\Gamma)_{geo}$ and $X//\Gamma$ are in bijection but not in a canonical way in general.

Example :

Let $X := (\mathbb{C}^{\times})^n$. The symmetric group S_n acts on X by permuting the coordinates. First, we form the ordinary quotient:

$$X/S_n = (\mathbb{C}^{\times})^n/S_n =: \operatorname{Sym}^n(\mathbb{C}^{\times}),$$

which is called the *n*-fold symmetric product of \mathbb{C}^{\times} .

Next, we form the geometric extended quotient $(X//S_n)_{geo}$.

The conjugacy class of $\gamma \in S_n$ determines a partition of n. Let the distinct parts of the partition be n_1, \ldots, n_l with n_i repeated d_i times so that $d_1n_1 + d_2n_2 + \cdots + d_ln_l = n$. We get

$$X^{\gamma}\simeq (\mathbb{C}^{ imes})^{n_1} imes\cdots imes (\mathbb{C}^{ imes})^{n_l}$$

$$\mathbf{Z}_{S_n}(\gamma) \simeq (\mathbb{Z}/d_1\mathbb{Z}) \wr S_{n_1} \times \cdots \times (\mathbb{Z}/d_l\mathbb{Z}) \wr S_{n_l}$$

The cyclic group $\mathbb{Z}/d_i\mathbb{Z}$ acting trivially, we have

$$X^{\gamma}/\mathbb{Z}_{S_n}(\gamma) \simeq \operatorname{Sym}^{n_1}\mathbb{C}^{\times} \times \cdots \times \operatorname{Sym}^{n_l}\mathbb{C}^{\times}.$$

Example 2

Let $\mathcal T$ be a torus in a complex reductive group $\mathcal G$ and $W:=\mathrm{N}_{\mathcal G}(\mathcal T)/\mathcal T$ the corresponding Weyl group, acting on $\mathcal T$ by conjugation, then we can consider the extended quotients $(\mathcal T/\!/W)_{\mathrm{geo}}$ and $\mathcal T/\!/W$.

Example 3

Let G be a p-adic group, let L be a Levi subgroup of G and let $\mathrm{Irr}_{\mathrm{cusp}}(L)$ denote the set of isomorphism classes of supercuspidal irreducible smooth representations of L.

The group $W(L) := N_G(L)/L$ acts on $Irr_{cusp}(L)$ and we can form the panoramic (spectral) p-adic extended quotient:

$$\operatorname{Irr}_{\operatorname{cusp}}(L)//W(L)$$
.

The ABPS Conjecture (coarse form) [A.-Baum-Plymen-Solleveld]

When $\mathbb{F}=F$ is a non-archimedean local field, for every $\mathfrak{s}\in\mathfrak{B}(G)$, the set $\mathrm{Irr}^{\mathfrak{s}}(G)$ of irreducible objects of the category $\mathfrak{R}^{\mathfrak{s}}(G)$ has a very simple geometric structure given by a (possibly twisted by a 2-cocycle) extended quotient $(T^{\mathfrak{s}}/\!/W^{\mathfrak{s}})_{\natural}$, where $T^{\mathfrak{s}}$ is a complex torus and $W^{\mathfrak{s}}$ is the finite group

$$W^{\mathfrak s}:=\{w\in \mathrm{N}_G(L)/L: \ ^w\mathfrak s=\mathfrak s\}.$$

Remarks

- If G is a quasi-split classical group [A.-Moussaoui-Solleveld] or the exceptional group G_2 [A.-Xu], no twisting is needed.
- However, for $G = \operatorname{SL}_n(D)$, with D/F a division algebra, there are cases which require a twisting [A.-Baum-Plymen-Solleveld].

Notation

Let Γ be a group acting on a topological space X and let Γ_X denote the stabilizer in Γ of $X \in X$. Let \natural be a collection of 2-cocycles

$$\natural_x \colon \Gamma_x \times \Gamma_x \to \mathbb{C}^\times,$$

such that $abla_{\gamma x}$ and $\gamma_*
abla_x$ define the same class in $H^2(\Gamma_{\gamma x}, \mathbb{C}^{\times})$, where $\gamma_* \colon \Gamma_x \to \Gamma_{\gamma x}$ sends γ' to $\gamma \gamma' \gamma^{-1}$.

Let $\mathbb{C}[\Gamma_x, \natural_x]$ be the group algebra of Γ_x twisted by \natural_x , which is defined to be the \mathbb{C} -vector space $\mathbb{C}[\Gamma_x, \natural_x]$ with basis $\{t_\gamma : \gamma \in \Gamma_x\}$ and multiplication rules $t_\gamma t_{\gamma'} := \natural_x (\gamma, \gamma') t_{\gamma\gamma'}$, for any $\gamma, \gamma' \in \Gamma_x$. We set

$$\widetilde{X}_{
abla} := \{(x, \tau) : x \in X, \, \tau \in \operatorname{Irr} \mathbb{C}[\Gamma_{x}, \natural_{x}]\}$$

and topologize \widetilde{X}_{\natural} by decreeing that a subset of \widetilde{X}_{\natural} open if its projection to the first coordinate is open in X.

Definition

We require, for every $(\gamma, x) \in \Gamma \times X$, a definite algebra isomorphism

$$f_{\gamma,x}\colon \mathbb{C}[\Gamma_x,
atural_x] o \mathbb{C}[\Gamma_{\gamma x},
atural_{\gamma x}]$$

satisfying the conditions

- (a) if $\gamma x = x$, then $f_{\gamma,x}$ is conjugation by an element of $\mathbb{C}[\Gamma_x, \natural_x]^{\times}$;
- (b) $f_{\gamma',\gamma x} \circ f_{\gamma,x} = f_{\gamma'\gamma,x}$ for all $\gamma', \gamma \in \Gamma$ and $x \in X$.

Define a Γ -action on \widetilde{X}_{\natural} by $\gamma \cdot (x, \tau) := (\gamma x, \tau \circ f_{\gamma, x}^{-1})$.

The twisted extended quotient of X by Γ with respect to \natural is defined to be

$$(X//\Gamma)_{\natural} := \widetilde{X}_{\natural}/\Gamma.$$

A key example

Let $G=\operatorname{SL}_5(D)$ with D a central division algebra of dimension 4 over F. Let V_4 denote the non-cyclic group of order 4. Let W_F denote the Weil group of F. There exists a classical Langlands parameter $\phi\colon W_F\to\operatorname{PGL}_2(\mathbb{C})$ for $\operatorname{SL}_1(D)$ which factors through V_4 :

$$\phi \colon W_F \to V_4 \to \mathrm{PGL}_2(\mathbb{C}).$$

Let τ be the supercuspidal representation of $\mathrm{GL}_1(D) = D^{\times}$ which has, as its Langlands parameter, a lift φ of ϕ to $\mathrm{GL}_2(\mathbb{C})$:

$$\phi \colon W_F \stackrel{\varphi}{\to} \mathrm{GL}_2(\mathbb{C}) \to \mathrm{PGL}_2(\mathbb{C}).$$

The group of characters χ for which $\chi \tau \simeq \tau$ is isomorphic to V_4 and comprises the four characters $\{1, \gamma, \eta, \gamma \eta\}$, where γ, η are quadratic characters.

A key example (continued

Let $\mathfrak{s}:=[L,\sigma]_G$ with $L:=(D^\times)^5\cap \mathrm{SL}_5(D)$ and $\sigma=\tau\otimes 1\otimes\gamma\otimes\eta\otimes\gamma\eta$. We have $W^\mathfrak{s}\simeq V_4$ and

$$\mathcal{H}(G)^{\mathfrak s} \underset{\mathsf{Morita}}{\sim} \mathcal{O}(T^{\mathfrak s}) \rtimes_{
atural} V_4$$

$$\operatorname{Irr}(\mathcal{O}(T^{\mathfrak s}) \rtimes_{\natural} V_4) = (T^{\mathfrak s} /\!/ V_4)_{\natural}.$$

This example shows that for inner forms of $SL_5(F)$ there are Bernstein components where the twisting is non-trivial.

Definition/Notation

An irreducible smooth representation of G is said to be tempered if it is unitary and its matrix coefficients lie in $L^{2+\epsilon}(G/Z)$ for all $\epsilon>0$. Let $\operatorname{Irr}^{\operatorname{t}}(G)$ denote the tempered dual of G, i.e., the set of isomorphism classes of irreducible tempered representations of G.

Conjecture ABPS (strong form) [A.-Baum-Plymen-Solleveld]

Let G be a p-adic group, and $\mathfrak s$ a point in the Bernstein spectrum of G. There is a bijection

$$u^{\mathfrak s} \colon (T^{\mathfrak s} /\!/ W^{\mathfrak s})_{
atural} o \operatorname{Irr}^{\mathfrak s}(G)$$

such that the following properties are satisfied

- $\nu^{\mathfrak{s}}$ maps $T^{\mathfrak{s}}_{\mathrm{cpt}}/\!/W^{\mathfrak{s}}$ onto $\mathrm{Irr}^{\mathfrak{s}}(G)\cap\mathrm{Irr}^{\mathfrak{t}}(G)$, where $T^{\mathfrak{s}}_{\mathrm{cpt}}$ is the maximal compact subgroup of $T^{\mathfrak{s}}$
- ② there is an algebraic family $\vartheta_z\colon T^{\mathfrak s}_{\mathrm{cpt}}/\!/W^{\mathfrak s} \to T^{\mathfrak s}/W^{\mathfrak s}$ of finite morphisms of algebraic varieties, with $z\in\mathbb C^{\times}$, such that ϑ_1 is the natural projection and

$$\vartheta_{\sqrt{q}} = \mathrm{Sc}^{\mathfrak{s}} \circ \nu^{\mathfrak{s}}$$

where $\mathrm{Sc}^{\mathfrak s}(\pi) := \mathfrak s$ and q is the order of the residue field of F.

- **3** $\nu^{\mathfrak{s}}$ comes from a canonical stratified equivalence of the two unital finite-type $\mathcal{O}(T^{\mathfrak{s}}/W^{\mathfrak{s}})$ -algebras $\mathcal{O}(T^{\mathfrak{s}}) \rtimes W^{\mathfrak{s}}$ and $\mathcal{H}(G)^{\mathfrak{s}}$
- \bullet $\nu^{\mathfrak{s}}$ is compatible with the local Langlands correspondence.