Lecture 5: Two sided cells and asymptotic Hecke algebras

Anne-Marie Aubert

Institut de Mathématiques de Jussieu - Paris Rive Gauche

NSF-CBMS Conference: Representations of *p*-adic groups and noncommutative geometry

St John's University, Queens, NY

June 9-13, 2025

Notation

Let $\mathcal{R} = (X, Y, R, R^{\vee})$ be a root datum. It delivers the following items:

- $W_{\rm f} := W(R)$ finite Weyl group
- ullet $\widetilde{W}:=W_{
 m f}\ltimes X$ extended affine Weyl group
- $\mathcal{T} := \operatorname{Hom}(X, \mathbb{C})$ a complex torus
- for each $u \in \mathbb{C}^{\times}$, the affine Hecke algebra $\mathcal{H} := \mathcal{H}(\widetilde{W}, u)$

Remarks

- Let $\mathcal G$ be the reductive group over $\mathbb C$ corresponding to $\mathcal R$. Then $\mathcal T$ is a maximal torus of $\mathcal G$.
- The algebra \mathcal{H} has equal parameters. Partly conjectural versions of the following results exist also for unequal parameters affine Hecke algebras. See: G. Lusztig, *Hecke algebras with unequal parameters*, CRM Monogr. Ser., **18**, Amer. Math. Soc., Providence, RI, 2003. vi+136 pp.

Recollection

The algebra \mathcal{H} has two \mathcal{A} -bases, where $\mathcal{A} := \mathbb{Z}[v, v^{-1}]$ with $u := v^2$.

• the basis $(T_w)_{w \in \widetilde{W}}$, with multiplication is defined by the relations

$$(T_s - u)(T_s + 1) = 0$$
 if s is a simple reflection

$$T_w T_{w'} = T_{ww'}$$
 if $\ell(ww') = \ell(w) + \ell(w')$.

• the Kazhdan-Lusztig basis $(C_w)_{w \in \widetilde{W}}$.

Notation

Let $w, w' \in \widetilde{W}$. We write $w \leq_{LR} w'$ if $\lambda_w \neq 0$ in the expression

$$hC_{w'}h' = \sum_{z \in \widetilde{W}} \lambda_z C_z \quad (a_z \in A)$$

for some $h, h' \in \mathcal{H}$.

Definition

The relation \leq_{LR} defines a preorder on \widehat{W} . The corresponding equivalence classes are called two-sided cells and the preorder gives rise to a partial order \leq_{LR} on the set of two-sided cells of \widetilde{W} .

Definition

Let $\mathcal{H}_{\leq w}$ be the minimal based (i.e., spanned over \mathbb{Z} by a subset of the Kazhdan-Lusztig basis) two-sided ideal of \mathcal{H} that contains C_w .

Characterization

Two elements $w, w' \in \widetilde{W}$ lie in the same two-sided cell of \widetilde{W} iff

$$\mathcal{H}_{\leq w} = \mathcal{H}_{\leq w'}$$
.

Let $\mathcal{C}(\widetilde{W})$ denote the set of two-sided cells of \widetilde{W} .

$\mathsf{Theorem}\,\left[\mathsf{Lusztig}\right]$

There is a natural bijective correspondence $\mathbf{c}\mapsto\mathcal{O}_\mathbf{c}$ between the set of two-sided cells in \widehat{W} and the set of \mathcal{G} -conjugacy classes of unipotent elements of \mathcal{G} .

Remark

We define a partial order \leq on unipotent \mathcal{G} -conjugacy classes by setting

$$\mathcal{O}' \leq \mathcal{O}$$
 if $\mathcal{O}' \subset \overline{\mathcal{O}}$,

where $\overline{\mathcal{O}}$ is the closure of \mathcal{O} .

The above theorem gives an order on two-sided cells. This order coincides with the natural one. (This was conjectured by Lusztig and proved by Bezruknavnikov.)

Definitions [Lusztig]

• Let $h_{w,w',z}$ denote the structure constants of \mathcal{H} with respect to the basis $(C_w)_{w \in W}$, i.e.,

$$C_w C_{w'} = \sum_{z \in \widetilde{W}} h_{w,w',z} C_z.$$

• For **c** a given two-sided cell of \widehat{W} , let $-a(\mathbf{c})$ be the lowest possible degree of non-zero term in $h_{w,w',z}$, $w,w'\in\mathbf{c}$, $z\in\widehat{W}$.

Notation

We will denote by \mathcal{B}_c the Springer fiber:

$$\mathcal{B}_{\mathbf{c}} := \{ B \text{ Borel subgroup } : u \in B \}$$

where $u \in \mathcal{O}_{\mathbf{c}}$.

Proposition [Lusztig]

- ① The a-function sends every two-sided cell \mathbf{c} of \widetilde{W} to the dimension of $\mathcal{B}_{\mathbf{c}}$.
- For an affine Weyl group the a-function is bounded by the length of the longest element of the corresponding Weyl group.

Example

The exceptional group $G_2(\mathbb{C})$ has five unipotent classes

$$1 \leq A_1 \leq \widetilde{A}_1 \leq G_2(a_1) \leq G_2.$$

We will refer to 1, A_1 , \widetilde{A}_1 , $G_2(a_1)$ and G_2 as the trivial, minimal, subminimal, subregular and regular class, respectively.

Example (continued)

Thus, the group $W:=W_{\mathrm{f}}\ltimes X(\mathcal{T})$ of $\mathrm{G}_2(\mathbb{C})$ has five two-sided cells:

$$\mathbf{c}_0 \leq \mathbf{c}_3 \leq \mathbf{c}_2 \leq \mathbf{c}_1 \leq \mathbf{c}_e.$$

The Lusztig bijection is described as follows:

$$\mathbf{c}_e \leftrightarrow \mathrm{G}_2 \quad \mathbf{c}_1 \leftrightarrow \mathrm{G}_2(a_1) \quad \mathbf{c}_2 \leftrightarrow \widetilde{\mathrm{A}}_1 \quad \mathbf{c}_3 \leftrightarrow \mathrm{A}_1 \quad \mathbf{c}_0 \leftrightarrow 1.$$

Explicit description of the cells:

$$\begin{aligned} \mathbf{c}_e &= \left\{ w \in \widetilde{W} \, : \, a(w) = 0 \right\} = \{e\} \\ \mathbf{c}_1 &= \left\{ w \in \widetilde{W} \, : \, a(w) = 1 \right\} \\ \mathbf{c}_2 &= \left\{ w \in \widetilde{W} \, : \, a(w) = 2 \right\} \\ \mathbf{c}_3 &= \left\{ w \in \widetilde{W} \, : \, a(w) = 3 \right\} \\ \mathbf{c}_0 &= \left\{ w \in \widetilde{W} \, : \, a(w) = 6 \right\} \ \, \text{(the lowest two-sided cell)}. \end{aligned}$$

Definition [Lusztig]

The asymptotic affine Hecke algebra J is has basis

$$\Big\{t_w\,:\,w\in\widetilde{W}\Big\},$$

and multiplication defined by

$$t_w t_{w'} := \sum_{z \in \widetilde{W}} \gamma_{w,w',z} t_{z^{-1}}$$

where the structure constant $\gamma_{w,w',z}$ is the constant term of the polynomial $v^{a(z)} h_{w,w',z^{-1}}$. It is an associative algebra.

Distinguished involutions

We set

$$\mathcal{D}:=\Big\{d\in\widetilde{W}\ :\ \mathsf{a}(w)=\ell(w)+2\deg(P_{1,w})\Big\}.$$

The elements of \mathcal{D} are involutions (i.e., $d^2=1$) and each two-sided cell contains exactly one of them.

The element $\sum_{d \in \mathcal{D}} t_d$ is the unit element in the algebra J.

Definition

For \mathbf{c} a two-sided cell of \widetilde{W} , the $J_{\mathbf{c}}$ spanned by the t_w , $w \in \mathbf{c}$, is a two-sided ideal of J. The ideal $J_{\mathbf{c}}$ is in fact an associative ring with unit $\sum_{d \in \mathcal{D} \cap \mathbf{c}} t_d$, which is called the based ring of the two-sided cell \mathbf{c} .

Theorem [Lusztig]

We have

$$J = \bigoplus_{\mathbf{c} \in \mathcal{C}(\widetilde{W})} J_{\mathbf{c}}.$$

Definition [Lusztig]

Let $\phi_u \colon \mathcal{H} \to \mathcal{J} := J \otimes_{\mathbb{Z}} \mathcal{A}$ the homomorphism

$$C_w \mapsto \sum_{\substack{z \in \widetilde{W}, d \in \mathbf{c} \cap \mathcal{D} \\ a(d) = a(z)}} h_{w,d,z} t_z.$$

Proposition

The map ϕ_u is injective, and we have

$$\phi_u(Z(\mathcal{H})) \subset Z(\mathcal{J}).$$

Key point for us

The Proposition above provides \mathcal{J} (and also each \mathcal{J}_c) with a structure of $Z(\mathcal{H})$ -algebra. This $Z(\mathcal{H})$ -algebra structure is not canonical: it depends on u. There is a canonical isomorphism $Z(\mathcal{H}) \simeq \mathcal{O}(X) =: k$. We will denote this k-algebra by \mathcal{J}_u .

Definition

Let $\mathcal{H}^{\geq i}$ be the \mathbb{C} -subspace of \mathcal{H} spanned by all the C_w with $w \in \widetilde{W}$ such that $a(w) \geq i$. This a two-sided ideal of \mathcal{H} . We set

$$\mathcal{H}^i := \mathcal{H}^{\geq i}/\mathcal{H}^{\geq i+1}.$$

This is an \mathcal{H} -bimodule. It has as \mathbb{C} -basis the images $[C_w]$ of the C_w such that a(w) = i.

We may regard \mathcal{H}^i as a J-bimodule with multiplication defined by the rule:

$$t_{\mathsf{X}} * [\mathsf{C}_{\mathsf{W}}] = \sum_{\substack{\mathsf{z} \in \widetilde{\mathsf{W}} \\ \mathsf{a}(\mathsf{z}) = i}} \gamma_{\mathsf{X},\mathsf{W},\mathsf{z}^{-1}} \mathsf{C}_{\mathsf{z}}$$

$$[C_w] * t_x = \sum_{\substack{z \in \widetilde{W} \\ a(z) = i}} \gamma_{w,x,z^{-1}} C_z$$

for all $w, x \in \widetilde{W}$ such that a(w) = i.

Proof of the Proposition

It is enough to show that $\phi_u(z) \cdot t_w = t_w \cdot \phi_u(z)$ for any $z \in k$, $w \in \widetilde{W}$. Let i := a(w), and $z \in k$. We set

$$f_i := \sum_{\substack{d \in \mathcal{D} \\ a(d)=i}} [C_d] \in \mathcal{H}^i.$$

We have $t_w * f_i = f_i * t_w = [C_w]$. Hence we obtain

$$(\phi_u(z) \cdot t_w) * f_i = \phi_u(z) * t_w * f_i = \phi_u(z) * [C_w] = z[C_w].$$

We observe that $hf = \phi_u(h) * f$ for all $f \in \mathcal{H}^i$, $h \in \mathcal{H}$. Hence we get

$$(t_w \phi_u(z)) * f_i = t_w * (\phi_u(z) * f_i) = t_w * (zf_i)$$

and, hence, since $zf_i = f_i z$,

$$(t_w \cdot \phi_u(z)) * f_i = t_w * (f_i z)$$

Observing that (j * f)h = j * (fh), for all $f \in \mathcal{H}^i$, $h \in \mathcal{H}$, and $j \in J$, we obtain

$$(t_w \cdot \phi_u(z)) * f_i = (t_w * f_i)z = [C_w]z.$$
 (1)

Now, since $z \in k$, we have $z[C_w] = [C_w]z$. Hence

$$(\phi_u(z)\cdot t_w)*f_i=(t_w*f_i)w=[C_x]\cdot\phi_u(z))*f_i.$$

On can check that $\gamma_{w,w',z}=0$ implies a(w)=a(w')=a(z). Hence

$$\phi_{u}(z) \cdot t_{w} = \sum_{w' \in \widetilde{W} \atop a(w') = i} \alpha_{w'} t_{w'} \quad \text{and} \quad t_{w} \cdot \phi_{u}(z) = \sum_{w' \in \widetilde{W} \atop a(w') = i} \beta_{w'} t_{w'}$$

with $\alpha_{w'}, \beta_{w'} \in \mathbb{C}$. Then (1) implies that

$$\sum_{w' \in \widetilde{W} \atop \mathsf{al}(w') = i} \alpha_{w'} \mathsf{C}_{w'} = \sum_{w' \in \widetilde{W} \atop \mathsf{al}(w') = i} \beta_{w'} \mathsf{C}_{w'}.$$

Hence $\alpha_{w'}$, = $\beta_{w'}$ for all $w' \in \widetilde{W}$ such that a(w) = i. It gives $\phi_u(z) \cdot t_w = t_w \cdot \phi_u(z)$, as required.

Remark

Since $\mathcal{H}(\widetilde{W},1)=\mathbb{C}[\widetilde{W}]$ we obtain

$$\mathcal{H}(\widetilde{W},u) \stackrel{\phi_u}{\longrightarrow} \mathcal{J} \stackrel{\phi_1}{\longleftarrow} \mathbb{C}[\widetilde{W}].$$

Definition [Lusztig]

Let E be a simple \mathcal{H} -module (resp. \mathcal{J} -module, with $\mathcal{J}_{\mathbf{c}} := J_{\mathbf{c}} \otimes_{\mathbb{Z}} \mathcal{A}$). We attach to E an integer a_E by the following two requirements:

- $C_w E = 0$ (resp. $t_w E = 0$) for any $w \in \widetilde{W}$ with $a(w) > a_E$;
- ② $C_w E \neq 0$ (resp. $t_w E \neq 0$) for some $w \in W$ such $a(w) = a_E$.

The integer A_E is called the weight of E.

Let $\operatorname{Irr}(\mathcal{H}(\widetilde{W},u))_a$ (resp. $\operatorname{Irr}(\mathcal{J})_a$) denote the set of simple $\mathcal{H}(\widetilde{W},u)$ -modules (resp. simple \mathcal{J} -modules) of weight a.

Notation

Let a be a positive integer. We define

$$J_a:=$$
 ideal generated by $\{t_w\in J\,:\, a(w)\leq a\}$
$$I_a:=\phi_u^{-1}(J_a).$$

Filtrations

We have the filtrations

$$0 \subset I_1 \subset I_2 \subset \cdots \subset I_r = \mathcal{H}(\widetilde{W}, u)$$
$$0 \subset J_1 \subset J_2 \subset \cdots \subset J_r = \mathcal{T}.$$

We have

$$\operatorname{Irr}(\mathcal{H}(\widetilde{W},u)) = \bigcup_{a} \operatorname{Irr}(I_a/I_{a-1})$$
 and $\operatorname{Irr}(\mathcal{J}) = \bigcup_{a} \operatorname{Irr}(J_a/J_{a-1})$

with
$$\operatorname{Irr}(I_a/I_{a-1}) = \operatorname{Irr}(\mathcal{H}(\widetilde{W},u))_a$$
 and $\operatorname{Irr}(J_a/J_{a-1}) = \operatorname{Irr}(\mathcal{J})_a$.

Theorem [Lusztig]

We assume that u is 1 or is not a root of unity. Then there is a unique bijection

$$\mathcal{L}_u$$
: $\operatorname{Irr}(\mathcal{H}(W,u) \to \operatorname{Irr}(\mathcal{J})$
 $E \mapsto E'$

between the set of isomorphism classes of simple $\mathcal{H}(W,u)$ -modules and the set of isomorphism classes of simple \mathcal{J} -modules such that

- \bullet $a_E = a_{E'}$ and
- the restriction of E to $\mathcal{H}(W,u)$ via ϕ_u is an $\mathcal{H}(W,u)$ -module with exactly one composition factor isomorphic to E and all other composition factors of the form \bar{E} with $a_{\bar{E}} < a_{\bar{E}}$.

Thus the map \mathcal{L}_u , for every a, the map \mathcal{L}_u is a bijection

$$\operatorname{Irr}(\mathcal{J}) \xrightarrow{1-1} \operatorname{Irr}(\mathcal{H}(\widetilde{W}, u))$$

and induces a bijection

$$\operatorname{Irr}(\mathcal{J})_{\mathsf{a}} \xrightarrow{1-1} \operatorname{Irr}(\mathcal{H}(\widetilde{W}, u))_{\mathsf{a}}.$$