Lecture 5: Two sided cells and asymptotic Hecke algebras ## Anne-Marie Aubert Institut de Mathématiques de Jussieu - Paris Rive Gauche NSF-CBMS Conference: Representations of *p*-adic groups and noncommutative geometry St John's University, Queens, NY June 9-13, 2025 ### Notation Let $\mathcal{R} = (X, Y, R, R^{\vee})$ be a root datum. It delivers the following items: - $W_{\rm f} := W(R)$ finite Weyl group - ullet $\widetilde{W}:=W_{ m f}\ltimes X$ extended affine Weyl group - $\mathcal{T} := \operatorname{Hom}(X, \mathbb{C})$ a complex torus - for each $u \in \mathbb{C}^{\times}$, the affine Hecke algebra $\mathcal{H} := \mathcal{H}(\widetilde{W}, u)$ #### Remarks - Let $\mathcal G$ be the reductive group over $\mathbb C$ corresponding to $\mathcal R$. Then $\mathcal T$ is a maximal torus of $\mathcal G$. - The algebra \mathcal{H} has equal parameters. Partly conjectural versions of the following results exist also for unequal parameters affine Hecke algebras. See: G. Lusztig, *Hecke algebras with unequal parameters*, CRM Monogr. Ser., **18**, Amer. Math. Soc., Providence, RI, 2003. vi+136 pp. ## Recollection The algebra \mathcal{H} has two \mathcal{A} -bases, where $\mathcal{A} := \mathbb{Z}[v, v^{-1}]$ with $u := v^2$. • the basis $(T_w)_{w \in \widetilde{W}}$, with multiplication is defined by the relations $$(T_s - u)(T_s + 1) = 0$$ if s is a simple reflection $$T_w T_{w'} = T_{ww'}$$ if $\ell(ww') = \ell(w) + \ell(w')$. • the Kazhdan-Lusztig basis $(C_w)_{w \in \widetilde{W}}$. ### Notation Let $w, w' \in \widetilde{W}$. We write $w \leq_{LR} w'$ if $\lambda_w \neq 0$ in the expression $$hC_{w'}h' = \sum_{z \in \widetilde{W}} \lambda_z C_z \quad (a_z \in A)$$ for some $h, h' \in \mathcal{H}$. #### Definition The relation \leq_{LR} defines a preorder on \widehat{W} . The corresponding equivalence classes are called two-sided cells and the preorder gives rise to a partial order \leq_{LR} on the set of two-sided cells of \widetilde{W} . ## **Definition** Let $\mathcal{H}_{\leq w}$ be the minimal based (i.e., spanned over \mathbb{Z} by a subset of the Kazhdan-Lusztig basis) two-sided ideal of \mathcal{H} that contains C_w . ## Characterization Two elements $w, w' \in \widetilde{W}$ lie in the same two-sided cell of \widetilde{W} iff $$\mathcal{H}_{\leq w} = \mathcal{H}_{\leq w'}$$. Let $\mathcal{C}(\widetilde{W})$ denote the set of two-sided cells of \widetilde{W} . # $\mathsf{Theorem}\,\left[\mathsf{Lusztig}\right]$ There is a natural bijective correspondence $\mathbf{c}\mapsto\mathcal{O}_\mathbf{c}$ between the set of two-sided cells in \widehat{W} and the set of \mathcal{G} -conjugacy classes of unipotent elements of \mathcal{G} . ## Remark We define a partial order \leq on unipotent \mathcal{G} -conjugacy classes by setting $$\mathcal{O}' \leq \mathcal{O}$$ if $\mathcal{O}' \subset \overline{\mathcal{O}}$, where $\overline{\mathcal{O}}$ is the closure of \mathcal{O} . The above theorem gives an order on two-sided cells. This order coincides with the natural one. (This was conjectured by Lusztig and proved by Bezruknavnikov.) # **Definitions** [Lusztig] • Let $h_{w,w',z}$ denote the structure constants of \mathcal{H} with respect to the basis $(C_w)_{w \in W}$, i.e., $$C_w C_{w'} = \sum_{z \in \widetilde{W}} h_{w,w',z} C_z.$$ • For **c** a given two-sided cell of \widehat{W} , let $-a(\mathbf{c})$ be the lowest possible degree of non-zero term in $h_{w,w',z}$, $w,w'\in\mathbf{c}$, $z\in\widehat{W}$. #### Notation We will denote by \mathcal{B}_c the Springer fiber: $$\mathcal{B}_{\mathbf{c}} := \{ B \text{ Borel subgroup } : u \in B \}$$ where $u \in \mathcal{O}_{\mathbf{c}}$. # Proposition [Lusztig] - ① The a-function sends every two-sided cell \mathbf{c} of \widetilde{W} to the dimension of $\mathcal{B}_{\mathbf{c}}$. - For an affine Weyl group the a-function is bounded by the length of the longest element of the corresponding Weyl group. ### Example The exceptional group $G_2(\mathbb{C})$ has five unipotent classes $$1 \leq A_1 \leq \widetilde{A}_1 \leq G_2(a_1) \leq G_2.$$ We will refer to 1, A_1 , \widetilde{A}_1 , $G_2(a_1)$ and G_2 as the trivial, minimal, subminimal, subregular and regular class, respectively. ## Example (continued) Thus, the group $W:=W_{\mathrm{f}}\ltimes X(\mathcal{T})$ of $\mathrm{G}_2(\mathbb{C})$ has five two-sided cells: $$\mathbf{c}_0 \leq \mathbf{c}_3 \leq \mathbf{c}_2 \leq \mathbf{c}_1 \leq \mathbf{c}_e.$$ The Lusztig bijection is described as follows: $$\mathbf{c}_e \leftrightarrow \mathrm{G}_2 \quad \mathbf{c}_1 \leftrightarrow \mathrm{G}_2(a_1) \quad \mathbf{c}_2 \leftrightarrow \widetilde{\mathrm{A}}_1 \quad \mathbf{c}_3 \leftrightarrow \mathrm{A}_1 \quad \mathbf{c}_0 \leftrightarrow 1.$$ Explicit description of the cells: $$\begin{aligned} \mathbf{c}_e &= \left\{ w \in \widetilde{W} \, : \, a(w) = 0 \right\} = \{e\} \\ \mathbf{c}_1 &= \left\{ w \in \widetilde{W} \, : \, a(w) = 1 \right\} \\ \mathbf{c}_2 &= \left\{ w \in \widetilde{W} \, : \, a(w) = 2 \right\} \\ \mathbf{c}_3 &= \left\{ w \in \widetilde{W} \, : \, a(w) = 3 \right\} \\ \mathbf{c}_0 &= \left\{ w \in \widetilde{W} \, : \, a(w) = 6 \right\} \ \, \text{(the lowest two-sided cell)}. \end{aligned}$$ # **Definition** [Lusztig] The asymptotic affine Hecke algebra J is has basis $$\Big\{t_w\,:\,w\in\widetilde{W}\Big\},$$ and multiplication defined by $$t_w t_{w'} := \sum_{z \in \widetilde{W}} \gamma_{w,w',z} t_{z^{-1}}$$ where the structure constant $\gamma_{w,w',z}$ is the constant term of the polynomial $v^{a(z)} h_{w,w',z^{-1}}$. It is an associative algebra. ## Distinguished involutions We set $$\mathcal{D}:=\Big\{d\in\widetilde{W}\ :\ \mathsf{a}(w)=\ell(w)+2\deg(P_{1,w})\Big\}.$$ The elements of \mathcal{D} are involutions (i.e., $d^2=1$) and each two-sided cell contains exactly one of them. The element $\sum_{d \in \mathcal{D}} t_d$ is the unit element in the algebra J. ## Definition For \mathbf{c} a two-sided cell of \widetilde{W} , the $J_{\mathbf{c}}$ spanned by the t_w , $w \in \mathbf{c}$, is a two-sided ideal of J. The ideal $J_{\mathbf{c}}$ is in fact an associative ring with unit $\sum_{d \in \mathcal{D} \cap \mathbf{c}} t_d$, which is called the based ring of the two-sided cell \mathbf{c} . ## Theorem [Lusztig] We have $$J = \bigoplus_{\mathbf{c} \in \mathcal{C}(\widetilde{W})} J_{\mathbf{c}}.$$ ## **Definition** [Lusztig] Let $\phi_u \colon \mathcal{H} \to \mathcal{J} := J \otimes_{\mathbb{Z}} \mathcal{A}$ the homomorphism $$C_w \mapsto \sum_{\substack{z \in \widetilde{W}, d \in \mathbf{c} \cap \mathcal{D} \\ a(d) = a(z)}} h_{w,d,z} t_z.$$ ## Proposition The map ϕ_u is injective, and we have $$\phi_u(Z(\mathcal{H})) \subset Z(\mathcal{J}).$$ ## Key point for us The Proposition above provides \mathcal{J} (and also each \mathcal{J}_c) with a structure of $Z(\mathcal{H})$ -algebra. This $Z(\mathcal{H})$ -algebra structure is not canonical: it depends on u. There is a canonical isomorphism $Z(\mathcal{H}) \simeq \mathcal{O}(X) =: k$. We will denote this k-algebra by \mathcal{J}_u . ## Definition Let $\mathcal{H}^{\geq i}$ be the \mathbb{C} -subspace of \mathcal{H} spanned by all the C_w with $w \in \widetilde{W}$ such that $a(w) \geq i$. This a two-sided ideal of \mathcal{H} . We set $$\mathcal{H}^i := \mathcal{H}^{\geq i}/\mathcal{H}^{\geq i+1}.$$ This is an \mathcal{H} -bimodule. It has as \mathbb{C} -basis the images $[C_w]$ of the C_w such that a(w) = i. We may regard \mathcal{H}^i as a J-bimodule with multiplication defined by the rule: $$t_{\mathsf{X}} * [\mathsf{C}_{\mathsf{W}}] = \sum_{\substack{\mathsf{z} \in \widetilde{\mathsf{W}} \\ \mathsf{a}(\mathsf{z}) = i}} \gamma_{\mathsf{X},\mathsf{W},\mathsf{z}^{-1}} \mathsf{C}_{\mathsf{z}}$$ $$[C_w] * t_x = \sum_{\substack{z \in \widetilde{W} \\ a(z) = i}} \gamma_{w,x,z^{-1}} C_z$$ for all $w, x \in \widetilde{W}$ such that a(w) = i. ## Proof of the Proposition It is enough to show that $\phi_u(z) \cdot t_w = t_w \cdot \phi_u(z)$ for any $z \in k$, $w \in \widetilde{W}$. Let i := a(w), and $z \in k$. We set $$f_i := \sum_{\substack{d \in \mathcal{D} \\ a(d)=i}} [C_d] \in \mathcal{H}^i.$$ We have $t_w * f_i = f_i * t_w = [C_w]$. Hence we obtain $$(\phi_u(z) \cdot t_w) * f_i = \phi_u(z) * t_w * f_i = \phi_u(z) * [C_w] = z[C_w].$$ We observe that $hf = \phi_u(h) * f$ for all $f \in \mathcal{H}^i$, $h \in \mathcal{H}$. Hence we get $$(t_w \phi_u(z)) * f_i = t_w * (\phi_u(z) * f_i) = t_w * (zf_i)$$ and, hence, since $zf_i = f_i z$, $$(t_w \cdot \phi_u(z)) * f_i = t_w * (f_i z)$$ Observing that (j * f)h = j * (fh), for all $f \in \mathcal{H}^i$, $h \in \mathcal{H}$, and $j \in J$, we obtain $$(t_w \cdot \phi_u(z)) * f_i = (t_w * f_i)z = [C_w]z.$$ (1) Now, since $z \in k$, we have $z[C_w] = [C_w]z$. Hence $$(\phi_u(z)\cdot t_w)*f_i=(t_w*f_i)w=[C_x]\cdot\phi_u(z))*f_i.$$ On can check that $\gamma_{w,w',z}=0$ implies a(w)=a(w')=a(z). Hence $$\phi_{u}(z) \cdot t_{w} = \sum_{w' \in \widetilde{W} \atop a(w') = i} \alpha_{w'} t_{w'} \quad \text{and} \quad t_{w} \cdot \phi_{u}(z) = \sum_{w' \in \widetilde{W} \atop a(w') = i} \beta_{w'} t_{w'}$$ with $\alpha_{w'}, \beta_{w'} \in \mathbb{C}$. Then (1) implies that $$\sum_{w' \in \widetilde{W} \atop \mathsf{al}(w') = i} \alpha_{w'} \mathsf{C}_{w'} = \sum_{w' \in \widetilde{W} \atop \mathsf{al}(w') = i} \beta_{w'} \mathsf{C}_{w'}.$$ Hence $\alpha_{w'}$, = $\beta_{w'}$ for all $w' \in \widetilde{W}$ such that a(w) = i. It gives $\phi_u(z) \cdot t_w = t_w \cdot \phi_u(z)$, as required. #### Remark Since $\mathcal{H}(\widetilde{W},1)=\mathbb{C}[\widetilde{W}]$ we obtain $$\mathcal{H}(\widetilde{W},u) \stackrel{\phi_u}{\longrightarrow} \mathcal{J} \stackrel{\phi_1}{\longleftarrow} \mathbb{C}[\widetilde{W}].$$ ## Definition [Lusztig] Let E be a simple \mathcal{H} -module (resp. \mathcal{J} -module, with $\mathcal{J}_{\mathbf{c}} := J_{\mathbf{c}} \otimes_{\mathbb{Z}} \mathcal{A}$). We attach to E an integer a_E by the following two requirements: - $C_w E = 0$ (resp. $t_w E = 0$) for any $w \in \widetilde{W}$ with $a(w) > a_E$; - ② $C_w E \neq 0$ (resp. $t_w E \neq 0$) for some $w \in W$ such $a(w) = a_E$. The integer A_E is called the weight of E. Let $\operatorname{Irr}(\mathcal{H}(\widetilde{W},u))_a$ (resp. $\operatorname{Irr}(\mathcal{J})_a$) denote the set of simple $\mathcal{H}(\widetilde{W},u)$ -modules (resp. simple \mathcal{J} -modules) of weight a. #### Notation Let a be a positive integer. We define $$J_a:=$$ ideal generated by $\{t_w\in J\,:\, a(w)\leq a\}$ $$I_a:=\phi_u^{-1}(J_a).$$ ### **Filtrations** We have the filtrations $$0 \subset I_1 \subset I_2 \subset \cdots \subset I_r = \mathcal{H}(\widetilde{W}, u)$$ $$0 \subset J_1 \subset J_2 \subset \cdots \subset J_r = \mathcal{T}.$$ We have $$\operatorname{Irr}(\mathcal{H}(\widetilde{W},u)) = \bigcup_{a} \operatorname{Irr}(I_a/I_{a-1})$$ and $\operatorname{Irr}(\mathcal{J}) = \bigcup_{a} \operatorname{Irr}(J_a/J_{a-1})$ with $$\operatorname{Irr}(I_a/I_{a-1}) = \operatorname{Irr}(\mathcal{H}(\widetilde{W},u))_a$$ and $\operatorname{Irr}(J_a/J_{a-1}) = \operatorname{Irr}(\mathcal{J})_a$. ## Theorem [Lusztig] We assume that u is 1 or is not a root of unity. Then there is a unique bijection $$\mathcal{L}_u$$: $\operatorname{Irr}(\mathcal{H}(W,u) \to \operatorname{Irr}(\mathcal{J})$ $E \mapsto E'$ between the set of isomorphism classes of simple $\mathcal{H}(W,u)$ -modules and the set of isomorphism classes of simple \mathcal{J} -modules such that - \bullet $a_E = a_{E'}$ and - the restriction of E to $\mathcal{H}(W,u)$ via ϕ_u is an $\mathcal{H}(W,u)$ -module with exactly one composition factor isomorphic to E and all other composition factors of the form \bar{E} with $a_{\bar{E}} < a_{\bar{E}}$. Thus the map \mathcal{L}_u , for every a, the map \mathcal{L}_u is a bijection $$\operatorname{Irr}(\mathcal{J}) \xrightarrow{1-1} \operatorname{Irr}(\mathcal{H}(\widetilde{W}, u))$$ and induces a bijection $$\operatorname{Irr}(\mathcal{J})_{\mathsf{a}} \xrightarrow{1-1} \operatorname{Irr}(\mathcal{H}(\widetilde{W}, u))_{\mathsf{a}}.$$