Lecture 6: The strong form of the ABPS Conjecture

Anne-Marie Aubert

Institut de Mathématiques de Jussieu - Paris Rive Gauche

NSF-CBMS Conference: Representations of *p*-adic groups and noncommutative geometry

St John's University, Queens, NY

June 9-13, 2025

Notation/Definition

- Let X be an affine algebraic variety over the complex numbers \mathbb{C} . We denote by $k := \mathcal{O}(X)$ the coordinate algebra of X.
- Let A be a k-algebra and let Prim(A) denote set of primitive ideals of A.
- An ideal I in a k-algebra A is a k-ideal if $\lambda a \in I$ for all $(\lambda, a) \in k \times I$.

Definition

A representation of A is a \mathbb{C} -vector space V with given morphisms of \mathbb{C} -algebras

$$A \longrightarrow \operatorname{Hom}_{\mathbb{C}}(V, V)$$
 and $k \longrightarrow \operatorname{Hom}_{\mathbb{C}}(V, V)$

such that

- \bullet $k \longrightarrow \operatorname{Hom}_{\mathbb{C}}(V, V)$ is unital
- (ωa) $v = \omega(av) = a(\omega v)$ for all $(\omega, a, v) \in k \times A \times V$.

Central character

The central character of a finite type k-algebra A is a map $\operatorname{Irr}(A) \longrightarrow X$ defined as follows. Let φ be an irreducible representation of A. For $\omega \in k$, define $T_\omega \colon V \to V$ by $T_\omega(v) = \omega v$ for all $v \in V$. Then T_ω is an intertwining operator for $A \to \operatorname{Hom}_{\mathbb{C}}(V,V)$. It is a scalar multiple of I_V (the identity operator of V).

$$T_{\omega} = \lambda_{\omega} I_{V}$$
 for some $\lambda_{\omega} \in \mathbb{C}$.

The map $\omega \mapsto \lambda_{\omega}$ is a unital morphism of \mathbb{C} -algebras $\mathcal{O}(X) \to \mathbb{C}$ and thus is given by evaluation at a unique (\mathbb{C} rational) point p_{φ} of X:

$$\lambda_{\omega} = \omega(p_{\varphi})$$
 for all $\omega \in \mathcal{O}(X)$.

The central character $\operatorname{cc} : \operatorname{Irr}(A) \longrightarrow X$ is $\varphi \mapsto p_{\varphi}$.

Proposition

A Morita equivalence between two finite type k-algebras A, B preserves the central character, i.e. there is commutativity in the diagram

$$\begin{array}{ccc}
\operatorname{Irr}(A) & \longrightarrow & \operatorname{Irr}(B) \\
\operatorname{cc} \downarrow & & \downarrow \operatorname{cc} \\
X & \xrightarrow{\operatorname{I}_X} & X
\end{array}$$

where the upper horizontal arrow is the bijection determined by the given Morita equivalence, the two vertical arrows are the two central characters.

Remark

In general, if $u \neq 1$, the k-algebras $\mathcal{H}(W_f \ltimes X, u)$ and $\mathbb{C}[W_f \ltimes X])$ are not isomorphic as k-algebras, or even not Morita equivalent.

Definition/Proposition

The exceptional set $\mathfrak{E}(A)$ is the set of all $x \in X$ such that the fibre of cc over x has cardinality greater than 1:

$$\mathfrak{E}(A) := \{ x \in X : \sharp cc^{-1}(x) > 1 \}.$$

If A and B are Morita equivalent as k-algebras, then we will have $\mathfrak{E}(A) = \mathfrak{E}(B)$.

Remark

In general, if $u \neq 1$, the k-algebras $\mathcal{H}(W_f \ltimes X, u)$ and $\mathbb{C}[W_f \ltimes X])$ have different exceptional sets.

Consequence

In some situations, Morita equivalence are too strong and we are led to use a weakening of this concept, which we call stratified equivalence. The stratified equivalence relation preserves the spectrum of A and also preserves the periodic cyclic homology of A.

Definition

Let A, B two finite type k-algebras. A morphism of k-algebras $f:A\to B$ is spectrum preserving if

- Given any primitive ideal $J \subset B$, there is a unique primitive ideal $I \subset A$ with $f^{-1}(J) \subset I$.
- **②** The resulting map $\operatorname{Prim}(B) \to \operatorname{Prim}(A)$ is a bijection.

Definition

A morphism of k-algebras $f: A \rightarrow B$ is spectrum preserving with respect to filtrations if there are k-ideals

$$0 = I_0 \subset I_1 \subset \cdots \subset I_{r-1} \subset I_r = A$$

in A, and k-ideals $0=J_0\subset J_1\subset\cdots\subset J_{r-1}\subset J_r=B$ in B, such that for every $j\in\{1,2,\ldots,r\}$, we have $f(J_j)\subset J_j$, and

$$I_i/I_{i-1} \rightarrow J_i/J_{i-1}$$
 is spectrum preserving.

Remark

The primitive ideal spaces of the subquotients I_j/I_{j-1} and J_j/J_{j-1} are called the strata for stratifications of $\operatorname{Prim}(A)$ and $\operatorname{Prim}(B)$.

- Each stratum of Prim(A) is mapped homeomorphically onto the corresponding stratum of Prim(B).
- However, the map $\operatorname{Prim}(A) \to \operatorname{Prim}(B)$ might not be a homeomorphism.

Support of a k-module

If $\mathfrak{P} \subset k$ is a prime ideal and M a k-module, then we denote by $M_{\mathfrak{P}}$ the localization of M at \mathfrak{P} , that is,

$$M_{\mathfrak{P}}:=S^{-1}M$$

where $S=k\backslash \mathfrak{P}$. The support of M is defined to be the set of maximal ideals $\mathfrak{P}\subset k$ such that the $M_{\mathfrak{P}}\neq 0$. It is a closed subset of $\mathrm{Max}(k)$ in the Zariski topology, where $\mathrm{Max}(k)$ denotes the maximal ideal spectrum of k.

Lemma

Let $f:A\to B$ be a spectrum preserving with respect to filtrations morphism of finite type k-algebras. Then the k-modules A and B have the same support.

Theorem [Baum-Nistor]

Let $f: A \to B$ be a spectrum preserving with respect to filtrations morphism of finite type k-algebras. Then the induced map

$$f_* : \mathrm{HP}(A) \longrightarrow \mathrm{HP}(B)$$

is an isomorphism.

Proof

See Theorem 7 in [P. Baum and V. Nistor, "Periodic cyclic homology of Iwahori-Hecke algebras", K-Theory **27** (2002), 329–357].

Algebraic variation of k-structure

Let A be a unital \mathbb{C} -algebra, and $\psi \colon k \to \mathrm{Z}(A[t,t^{-1}])$ a unital morphism of \mathbb{C} -algebras. For $\zeta \in \mathbb{C}^{\times}$, consider the composition

$$k \xrightarrow{\psi} \mathrm{Z}(A[t,t^{-1}]) \overset{\mathrm{ev}(\zeta)}{\longrightarrow} \mathrm{Z}(A).$$

and denote by A_{ζ} the unital k-algebra so obtained. We call such a family $\{A_{\zeta}\}_{{\zeta}\in\mathbb{C}^{\times}}$ an algebraic variation of k-structure with parameter space \mathbb{C}^{\times} .

Definition

With k fixed, we consider the collection of all finite type k-algebras. On this collection, a stratified equivalence is the equivalence relation generated by the two elementary steps:

- ES1 If there is a morphism of k-algebras $f: A \to B$ which is spectrum preserving with respect to filtrations, then $A \sim B$.
- ES2 If there is $\{A_{\eta}\}_{\zeta \in \mathbb{C}^{\times}}$, an algebraic variation of k-structure with parameter space \mathbb{C}^{\times} , such that each A_{ζ} is a unital finite type k-algebra, then for any $\zeta, \zeta' \in \mathbb{C}^{\times}$, $A_{\zeta} \sim A_{\zeta'}$.

Equivalent description

Two finite type k-algebras A, B are stratified equivalent if and only if there is a finite sequence A_0 , A_1 , A_2 , ..., A_r of finite type k-algebras with $A_0 = A$, $A_r = B$, and for each $j \in \{0, 1, \ldots, r-1\}$ one of the following three possibilities holds:

- a morphism of k-algebras $A_j \to A_{j+1}$ is given which is spectrum preserving with respect to filtrations.
- a morphism of k-algebras $A_{j+1} \to A_j$ is given which is spectrum preserving with respect to filtrations.
- $\{A_{\eta}\}_{\zeta\in\mathbb{C}^{\times}}$, an algebraic variation of k-structure with parameter space \mathbb{C}^{\times} , is given such that each A_{ζ} is a unital finite type k-algebra, and ζ' , ζ'' in \mathbb{C}^{\times} have been chosen such that $A_{j}=A_{\zeta'}$ and $A_{j+1}=A_{\zeta''}$.

Note

To define a stratified equivalence relating A and B, the finite sequence of elementary steps (including the filtrations) must be given. Once this has been done, a bijection of the primitive ideal spaces and an isomorphism of periodic cyclic homology are determined:

$$\operatorname{Prim}(A) \leftrightarrow \operatorname{Prim}(B)$$
 and $\operatorname{HP}_*(A) \simeq \operatorname{HP}_*(B)$.

Proposition [A-Baum-Plymen-Solleveld]

If two unital finite type k-algebras A, B are Morita equivalent (as k-algebras) then they are stratified equivalent:

$$A \sim_{\mathsf{Morita}} B \Longrightarrow A \sim B$$
.

In contrast, there exist k-algebras that are stratified equivalent but not Morita equivalent, e.g., the affine Hecke algebra $\mathcal{H}_q(W^{\mathrm{aff}})$ (with $q \neq 1$) associated to an affine Weyl group W^{aff} and the group algebra $\mathbb{C}[W^{\mathrm{aff}}]$ are stratified equivalent for almost all q, but they are not Morita equivalent en general.

Kev example

The Hecke-Iwahori algebra $\mathcal{H}(W,u)$, with $u \neq 1$ not a root of unity, is stratified equivalent to $\mathcal{H}(W,1)$ by the three elementary steps

$$\mathcal{H}(W,u) \rightsquigarrow \mathcal{J}_u \rightsquigarrow \mathcal{J}_1 \rightsquigarrow \mathcal{H}(W,1).$$

The second elementary step (i.e. passing from \mathcal{J}_u to \mathcal{J}_1) is an algebraic variation of k-structure with parameter space \mathbb{C}^{\times} . The first elementary step uses Lusztig's map ϕ_u , and the third elementary step uses Lusztig's map ϕ_1 .

Hence

$$\mathcal{H}(W,u)$$
 is stratified equivalent to $\mathcal{H}(W,1)=\mathbb{C}[W]$.

Notation

- Let $\mathcal{R} = (X, Y, R, R^{\vee}, \Pi)$ be a based reduced root datum. Here Π is a basis of simple roots of R. The set Π determines a subset R_+ of positive roots.
- Let X^+ denote the cone of dominant elements in X:

$$X^+ := \{ x \in X : \langle x, \alpha^{\vee} \rangle \ge 0 \text{ for all } \alpha \in R_+ \}.$$

We put $X^- := -X^+$.

- The extended affine Weyl group $W = W_f \ltimes X$, which acts as a group of affine transformations on $\mathbb{Q} \otimes_{\mathbb{Z}} X$.
- Let $\Omega := \left\{ w \in \widetilde{W} : \ell(w) = 0 \right\}$.
- $Z_X := X^+ \cap X^-$ is a sublattice of X which is central in \widetilde{W} . We have $Z_X \subset \Omega$.
- We fix a basis (z_i) of Z_X and define a norm $\| \ \|$ on $\mathbb{Q} \otimes_{\mathbb{Z}} Z_X$ by $\| \sum_i I_i z_i \| = \sum_i |I_i|$.

Definition of a norm on the extended affine Weyl group

We define a norm ${\mathcal N}$ on \widetilde{W} by setting

$$\mathcal{N}(w) := \ell(w) + \|\overline{w(0)}\|$$

with w(0) the image of $0 \in \mathbb{Q} \otimes_{\mathbb{Z}} X$ under the affine transformation w, and with w(0) the projection of w(0) onto $\mathbb{Q} \otimes_{\mathbb{Z}} Z_X$.

Remark

We have

- $\mathcal{N}(ww') \leq \mathcal{N}(w) + \mathcal{N}(w')$ for all $w, w' \in \widetilde{W}$
- $\mathcal{N}(w) = 0$ if and only if w is an element of Ω of finite order.

The Hecke algebra of the root datum

Given a root datum $\mathcal R$ and a (positive real) label function $\overline q\colon w\mapsto q_w$ on $\widetilde W$, there exists a unique associative complex Hecke algebra $\mathcal H:=\mathcal H(\widetilde W,\overline q)$ with $\mathbb C$ -basis N_w indexed by $w\in \widetilde W$, satisfying the relations:

- $(N_s + q_s^{1/2})(N_s q_s^{-1/2}) = 0$ for every affine simple reflection s
- $N_{ww'} = N_w N_{w'}$ if $\ell(ww') = \ell(w) + \ell(w')$.

Hilbert algebra structure on ${\cal H}$

The anti-linear map $h \mapsto h^*$ defined by

$$\left(\sum_{w\in\widetilde{W}}c_wN_w\right)^*:=\sum_{w\in\widetilde{W}}\overline{c_{w^{-1}}}N_w$$

is an anti-involution of $\mathcal{H}.$ Thus it gives \mathcal{H} the structure of an involutive algebra.

Definition

The linear functional $\tau \colon \mathcal{H} \to \mathbb{C}$ defined by

$$\tau\left(\sum_{w\in\widetilde{W}}c_wN_w\right)^{:}=c_e$$

is a positive trace for the involutive algebra $(\mathcal{H}, *)$.

The Hilbert completion of ${\cal H}$

The basis N_w of ${\mathcal H}$ is orthonormal with respect to the preHilbert structure on ${\mathcal H}$

$$(x,y) := \tau(x^*y).$$

We denote the Hilbert completion of \mathcal{H} with respect to (\cdot,\cdot) by $L^2(\mathcal{H})$. This is a separable Hilbert space with Hilbert basis $(N_w)_{w\in\widetilde{W}}$.

The Hilbert structure of \mathcal{H}

Let $x \in \mathcal{H}$. The operators $\lambda(x) \colon \mathcal{H} \to \mathcal{H}$ (given by $\lambda(x)(y) := xy$) and $\rho(x) \colon \mathcal{H} \to \mathcal{H}$ (given by $\rho(x)(y) := yx$) extend to $B(L^2(\mathcal{H}))$, the algebra of bounded operators on $L^2(\mathcal{H})$). This gives \mathcal{H} the structure of a Hilbert algebra.

Definition

The operator norm completion of $\lambda(\mathcal{H}) \subset B(L^2(\mathcal{H}))$ is a C^* -algebra which is called the reduced C^* -algebra $C^*_r(\mathcal{H})$ of \mathcal{H} .

Notation

We define norms p_n for n = 1, 2, ... on \mathcal{H} by

$$p_n(h) := \sup_{w \in \widetilde{W}} |(N_w, h)| \cdot (1 + \mathcal{N}(w))^n.$$

Definition [Delorme-Opdam]

The Schwartz completion \mathcal{S} of \mathcal{H} by

$$\mathcal{S}:=\Bigg\{x=\sum_{w\in\widetilde{W}}x_wN_w\,:\,p_n(x)<\infty \text{ for all }n\in\mathbb{Z}_+\Bigg\}.$$

Remark

The multiplication operation of \mathcal{H} is continuous with respect to the family p_n of norms. The completion \mathcal{S} is a (nuclear, unital) Fréchet algebra, and we have a continuous embedding

$$\mathcal{S} \subset C_{\mathrm{r}}^*(\mathcal{H}).$$

The subalgebra S is dense and symmetric (i.e., $S^* = S$).