Lecture 9: The ABPS conjecture at the level of K-theory

Anne-Marie Aubert

Institut de Mathématiques de Jussieu - Paris Rive Gauche

NSF-CBMS Conference: Representations of *p*-adic groups and noncommutative geometry

St John's University, Queens, NY

June 9-13, 2025

Introduction

Let G be a p-adic group. It follows from the work of Harish–Chandra that the irreducible representations of the reduced C^* -algebra $C^*_{\mathrm{red}}(G)$ can be identified with those of the Harish-Chandra-Schwartz algebra $\mathcal{S}(G)$. Thus we get

$$\operatorname{Irr}(C^*_{\operatorname{red}}(G)) = \operatorname{Irr}^{\operatorname{t}}(G)$$

which means that $C^*_{red}(G)$ is the correct C^* -algebra to study the noncommutative geometry of the tempered dual of G.

More properties of the Bruhat-Tits building of G

The Bruhat-Tits building of G, denoted by $\beta(G)$, is a proper G-space, satisfying the following properties

- $\beta(G)$ satisfies the negative curvature inequality [?, 2.3] and hence is contractible and has unique geodesics
- every compact subgroup of G fixes a point of $\beta(G)$

These properties make $\beta(G)$ into a universal space for proper G-actions.

The Baum–Connes conjecture

Let $K_*^G(\beta(G))$ denote the G-equivariant K-homology of $\beta(G)$ as defined by Kasparov. The Baum–Connes conjecture asserts that the canonical assembly map

$$K_*^G(\beta(G)) \to K_*(C_{\mathrm{red}}^*(G))$$

is an isomorphism. This was proven by V. Lafforgue for a large class of groups which includes all *p*-adic reductive groups.

The Bernstein decomposition of the reduced C^* -algebra of G

We have

$$C_{\mathrm{r}}^*(G) = \bigoplus_{\mathfrak{s} \in \mathfrak{B}(G)} C_{\mathrm{r}}^*(G)^{\mathfrak{s}}$$

with

$$\operatorname{Irr}(\mathcal{C}^*_{\operatorname{r}}(\mathcal{G})^{\mathfrak s}) \simeq \operatorname{Irr}^{\operatorname{t}}(\mathcal{G}) \cap \operatorname{Irr}^{\mathfrak s}(\mathcal{G}).$$

Notation

- Let L be a Levi subgroup of G and σ a supercuspidal irreducible representation of L.
- Recall that $\mathfrak{X}_{\mathrm{nr}}(L)$ denotes the group of unramified characters of L and $\mathfrak{X}_{\mathrm{unr}}(L) \subset \mathfrak{X}_{\mathrm{nr}}(L)$ the subgroup of unitary unramified characters
- Recall $\mathfrak{s}=(L,\mathfrak{X}_{\mathrm{nr}}(L)\cdot\sigma)_{G}\in\mathfrak{B}(G)$ and the stabilizer of \mathfrak{s} is

$$W^{\mathfrak s}:=\left\{n\in\operatorname{N}_{\mathcal G}(L):\ ^n\sigma\simeq\sigma\otimes\chi\ \text{ for some }\chi\in\mathfrak X_{\operatorname{nr}}(L)
ight\}/L.$$

- $\mathcal{O}^{t} := \mathfrak{X}_{unr}(L) \cdot \sigma$, where σ is chosen to be unitary.
- The orbit $\mathfrak{X}_{\mathrm{nr}}(L) \cdot \sigma$ has the structure of a complex torus $T^{\mathfrak{s}}$.
- \mathcal{O}^{t} has the structure of a compact torus: it is the maximal compact subgroup, denoted by $T_{u}^{\mathfrak{s}}$, of $T^{\mathfrak{s}}$.

Remark

If σ is unitary, it is a discrete series representation of L. Hence, we are considering the case of $\mathfrak{d} = (\mathcal{O}^t, \sigma)_G = [L, \sigma]_G$.

Conjecture [A-Baum-Plymen (2011)]

If G is quasi-split, then we have

$$K_j(C_{\mathbf{r}}^*(G)^{\mathfrak s}) \simeq K_{W^{\mathfrak s}}^j(T_{\mathbf{u}}^{\mathfrak s}) \quad \text{for } j = 0,1$$
 (1)

where $K_{W_s}^j(T_{\mathrm{u}}^s)$ is the classical topological equivariant K-theory for the group W^s acting on the compact torus T_{u}^s .

The case of an arbitray p-adic group G:

Notation

- Let $C_0(T_{\mathrm{u}}^{\mathfrak s}) := \{ f \in C(T_{\mathrm{u}}^{\mathfrak s} \sqcup \{\infty\}) : f(\infty) = 0 \}.$
- For $abla^{\mathfrak{s}} \colon W^{\mathfrak{s}} \times W^{\mathfrak{s}} \to \mathbb{C}^{\times}$ a 2-cocycle, there is $p_{\mathfrak{h}^{\mathfrak{s}}} \in \mathbb{C}[W^{\mathfrak{s}}]$ be a idempotent such that

$$p_{
abla^{\mathfrak{s}}}\mathbb{C}[\widetilde{W}^{\mathfrak{s}}] \simeq \mathbb{C}[W^{\mathfrak{s}},
abla^{\mathfrak{s}}]$$

for a central extension $\widetilde{W}^{\mathfrak{s}}$ of $W^{\mathfrak{s}}$.

Conjecture [A-Baum-Plymen-Solleveld (2017)]

Let G be an arbitrary p-adic group. For each $\mathfrak{s} \in \mathfrak{B}(G)$, there exists a 2-cocycle $abla^{\mathfrak{s}} \colon W^{\mathfrak{s}} \times W^{\mathfrak{s}} \to \mathbb{C}^{\times}$ such that

$$\mathit{K}^{j}_{W^{\mathfrak{s}},
abla^{\mathfrak{s}}}(\mathit{T}^{\mathfrak{s}}_{\mathrm{u}}) \simeq \mathit{K}_{j}(\mathit{C}^{st}_{\mathrm{r}}(\mathit{G})^{\mathfrak{s}}) \quad ext{for } j = 0, 1$$

where

$$\mathsf{K}^{j}_{W^{\mathfrak s}, \natural^{\mathfrak s}}(\mathcal{T}^{\mathfrak s}_{\mathrm{u}}) := \mathsf{p}_{\natural^{\mathfrak s}} \mathsf{K}^{j}_{\widetilde{W}^{\mathfrak s}}(\mathcal{T}^{\mathfrak s}_{\mathrm{u}}) \simeq \mathsf{K}_{j}(\mathsf{C}_{0}(\mathcal{T}^{\mathfrak s}_{\mathrm{u}}) \rtimes \mathbb{C}[W^{\mathfrak s}, \natural^{\mathfrak s}]).$$

Consequence

The ABPS conjecture at the level of *K*-theory asserts the existence of a bijection

$$\mathcal{K}_*^{\mathcal{G}}(eta(\mathcal{G}))
ightarrow igoplus_{\mathfrak{s} \in \mathfrak{B}(\mathcal{G})} \mathcal{K}_{W^{\mathfrak{s}},
atural}^j(\mathcal{T}_{\mathrm{u}}^{\mathfrak{s}}).$$

The local Langlands correspondence (enhanced version)

Notation

Groups attached to the *L*-parameter φ :

- $Z_{G^{\vee}}(\varphi) := \{g \in G^{\vee} : g\varphi(w')g^{-1} = \varphi(w') \text{ for all } w' \in W'_F\}$
- $\mathcal{S}_{\varphi} := \mathrm{Z}_{\mathsf{G}^{\vee}}(\varphi)/\mathrm{Z}_{\mathsf{G}^{\vee}}(\varphi)^{\circ}$ component group of $\mathrm{Z}_{\mathsf{G}^{\vee}}(\varphi)$

Definition

For the simplicity of exposition, we suppose in the lecture that G is quasi-split (an analogous but more technical definition works for an arbitrary G).

An enhanced *L*-parameter is a pair (φ, ρ) , where φ is an *L*-parameter and ρ an irreducible representation of S_{φ} .

The representation ρ is called an enhancement of φ .

Action of G^{\vee} on the set of enhanced L-parameters:

For $g \in G^{\vee}$, we define

$$g \cdot (\varphi, \rho) := (g\varphi g^{-1}, {}^{g}\rho)$$

where ${}^g\rho\colon h\mapsto
ho(g^{-1}hg)$ for $h\in \mathrm{Z}_{G^\vee}(\varphi)$.

We set

 $\Phi_{e}(G) := \{\text{enhanced } L\text{-parameters}\}/G^{\vee}.$

A bijective LLC

has been constructed in the following cases (in addition to the $\mathrm{GL}_n(\mathbb{F})$ -case):

- \mathbb{F} archimedean: for any G (Langlands)
- F nonarchimedean:
 - $G = \mathrm{SL}_n(\mathbb{F})$ (and its inner twists): Hiraga-Saito (2012) $\mathrm{char}(\mathbb{F}) = 0$; A.-Baum-Plymen-Solleveld (2016) $\mathrm{char}(\mathbb{F}) > 0$
 - $G = \operatorname{Sp}_{2n}(\mathbb{F}), \operatorname{SO}_{2n+1}(\mathbb{F}) \text{ (char}(\mathbb{F}) = 0)$: Arthur (2013)
 - $G = G_2(\mathbb{F})$: A.-Xu (2022), with $p \neq 2, 3$, Gan-Savin (2022).

The generalized Springer correspondence

Notation

Let $\mathcal G$ be a connected reductive group over $\mathbb C$ and let $\mathrm{Unip}_{\mathcal G}$ denote the unipotent variety of $\mathcal G$.

The category of \mathcal{G} -equivariant sheaves on $\mathrm{Unip}_{\mathcal{G}}$ has been the subject of many studies in geometric representation theory:

- Springer (1969, 1973) constructed the "Springer resolution" of $\mathrm{Unip}_{\mathcal{G}}$, and used it to give a geometric construction of the Weyl group representations from their actions on the cohomology of Springer fibers.
- ullet Lusztig (1984) generalized the method and gave a description of all perverse sheaves on $\mathrm{Unip}_{\mathcal{G}}$ in terms representations of various relative Weyl groups.

Generalized Springer variety [Lusztig, Invent. math. 1984]

- ullet $\mathcal{P} = \mathcal{L}\mathcal{U}$ parabolic subgroup of \mathcal{G}
- $u \in \mathcal{G}$ and $v \in \mathcal{L}$ unipotent elements.

The group $Z_{\mathcal{G}}(u) \times Z_{\mathcal{L}}(v)\mathcal{U}$ acts on the variety

$$Y_{u,v} := \left\{ y \in \mathcal{G} : y^{-1}uy \in v\mathcal{U} \right\}$$

by $(g,p)\cdot y:=gyp^{-1}$, with $g\in \mathrm{Z}_{\mathcal{G}}(u)$, $p\in \mathrm{Z}_{\mathcal{L}}(v)\mathcal{U}$ and $y\in Y_{u,v}$.

- Let $A_{\mathcal{G}}(u) := \pi_0(\mathrm{Z}_{\mathcal{G}}(u))$ and $A_{\mathcal{L}}(v) := \pi_0(\mathrm{Z}_{\mathcal{L}}(v))$
- The group $A_{\mathcal{G}}(u) \times A_{\mathcal{L}}(v)$ acts on the set of irreducible components of $Y_{u,v}$ of maximal dimension, i.e. of dimension

$$\dim \mathcal{U} + \frac{1}{2} (\dim \mathbf{Z}_{\mathcal{G}}(u) + \dim \mathbf{Z}_{\mathcal{L}}(v)).$$

• Let $\sigma_{u,v}$ denote the corresponding permutation representation.

Definition [Lusztig, Invent. math. 1984]

Let $\rho \in \operatorname{Irr}(A_{\mathcal{G}}(u))$. Then ρ is called cuspidal if, for every unipotent element $v \in \mathcal{L}$

$$\langle \rho, \sigma_{u,v} \rangle_{A_{\mathcal{G}}(u)} \neq 0 \quad \Rightarrow \quad \mathcal{P} = \mathcal{G}$$

where $\langle \; , \; \rangle_{A_{\mathcal{G}}(u)}$ is the usual scalar product on the space of class functions on $A_{\mathcal{G}}(u)$ with values in $\overline{\mathbb{Q}}_{\ell}$.

Disconnected complex reductive groups [A.-Moussaoui-Solleveld, 2018]

Let \mathcal{G} be a possibly disconnected reductive group over \mathbb{C} , with identity component \mathcal{G}° . Let $u \in \mathrm{U}(\mathcal{G})$ and $\rho \in \mathrm{Irr}(A_{\mathcal{G}}(u))$.

- We have $A_{\mathcal{G}^{\circ}}(u) \subset A_{\mathcal{G}}(u)$.
- The pair (u, ρ) is called cuspidal if the restriction of ρ to $A_{\mathcal{G}^{\circ}}(u)$ is a direct sum of irreducible representations ρ° such that one (or equivalently any) of the pairs (u, ρ°) is cuspidal.

Remark

Let $\mathcal C$ denote the $\mathcal G$ -conjugacy class of u. If (u,ρ) is cuspidal, then $\mathcal C$ is a distinguished (i.e. $\mathcal C$ does not meet the unipotent variety of $\mathcal L$ for any $\mathcal L \neq \mathcal G$). However, in general not every distinguished unipotent class supports a cuspidal representation.

Notation/Remark

Let $\mathcal C$ denote the unipotent $\mathcal G$ -conjugacy class of u. If $\mathcal G$ is connected, since its action on $\mathcal C$ is transitive, the (irreducible) $\mathcal G$ -equivariant local systems on $\mathcal C$ are in 1-1 correspondence with the (irreducible) representations of $A_{\mathcal G}(u)$:

$$\mathcal{F}_{\rho} \longleftrightarrow \rho$$
.

We will say that \mathcal{F}_{ρ} is cuspidal and $(\mathcal{C}, \mathcal{F}_{\rho})$ is a cuspidal unipotent pair whenever ρ is cuspidal.

Remark

Let $\mathcal C$ be unipotent $\mathcal G$ -conjugacy class such that $u\in \mathcal C$. If $\mathcal G$ is connected, since its action on $\mathcal C$ is transitive, the (irreducible) $\mathcal G$ -equivariant local systems on $\mathcal C$ are in 1-1 correspondence with the (irreducible) representations of $A_{\mathcal G}(u)$:

$$\mathcal{F}_{\rho} \longleftrightarrow \rho$$
.

We will say that \mathcal{F}_{ρ} is cuspidal and $(\mathcal{C}, \mathcal{F}_{\rho})$ is a cuspidal unipotent pair whenever ρ is cuspidal.

Notation

- \mathcal{P} parabolic subgroup of \mathcal{G} (i.e., subgroup of \mathcal{G} s.t. \mathcal{P}° is a parabolic subgroup of \mathcal{G}°)
- ullet ${\cal L}$ complement in ${\cal P}$ of its unipotent radical ${\cal U}$
- Unip_G unipotent variety of G, similarly, Unip_P, Unip_L
- $D^b_c(X)$ category of bounded constructible ℓ -adic sheaves on the algebraic stack X
- $\operatorname{Perv}_{\mathcal{G}}(\operatorname{Unip}_{\mathcal{G}})$ category of \mathcal{G} -equivariant perverse sheaves on $\operatorname{Unip}_{\mathcal{G}}$.

We consider the correspondence of algebraic stacks

$$\operatorname{Unip}_{\mathcal{L}}/\mathcal{L} \stackrel{\pi}{\longleftarrow} \operatorname{Unip}_{\mathcal{P}}/\mathcal{P} \stackrel{\iota}{\longrightarrow} \operatorname{Unip}_{\mathcal{G}}/\mathcal{G}$$

induced by the natural maps $\pi \colon \mathcal{P} \twoheadrightarrow \mathcal{L}$ and $\mathcal{P} \hookrightarrow \mathcal{G}$.

The functor $i_{\mathcal{L},\mathcal{P}}^{\mathcal{G}} \colon D_{\mathcal{C}}^{b}(\mathrm{Unip}_{\mathcal{L}}/\mathcal{L}) \to D_{\mathcal{C}}^{b}(\mathrm{Unip}_{\mathcal{C}}/\mathcal{G})$ is defined by

$$i_{\mathcal{L},\mathcal{P}}^{\mathcal{G}} := \iota_! \circ \pi^*.$$

Let $\mathcal F$ be an irreducible $\mathcal G$ -equivariant local system on a unipotent class $\mathcal C$ in \mathcal{G} .

The pair $(\mathcal{C}, \mathcal{F})$ is cuspidal if and only if the Deligne-Goresky-MacPherson intersection cohomology complex $IC(\mathcal{C}, \mathcal{F})$ does not occur in $i_{\mathcal{L},\mathcal{D}}^{\mathcal{G}}(D_{\mathcal{L}}^{b}(\mathrm{Unip}_{\mathcal{L}}/\mathcal{L}))$ for any proper Levi subgroup \mathcal{L} of \mathcal{G} .

14 / 18

Theorem [Lusztig, 1984]

Let $\mathcal C$ be a unipotent class in $\mathcal G = \mathcal G^\circ$ and $\mathcal F$ an irreducible $\mathcal G$ -equivariant local system on $\mathcal C$. Then $\mathrm{IC}(\mathcal C,\mathcal F)$ occurs as a summand of $\mathrm{i}_{\mathcal L\subset\mathcal P}^\mathcal G(\mathrm{IC}(\mathcal C_{\mathrm{cusp}},\mathcal F_{\mathrm{cusp}}))$, for some triple $(\mathcal P,\mathcal L,(\mathcal C_{\mathrm{cusp}},\mathcal F_{\mathrm{cusp}}))$, where $\mathcal P$ is a parabolic subgroup of $\mathcal G$ with Levi subgroup $\mathcal L$ and $(\mathcal C_{\mathrm{cusp}},\mathcal F_{\mathrm{cusp}})$ is a cuspidal unipotent pair in $\mathcal L$. Moreover, $(\mathcal P,\mathcal L,(\mathcal C_{\mathrm{cusp}},\mathcal F_{\mathrm{cusp}}))$ is unique up to $\mathcal G$ -conjugation.

Exists also for disconnected groups [A.-Moussaoui-Solleveld].

Definition

When $\mathcal{G}=\mathcal{G}^{\circ}$:

- The \mathcal{G} -conjugacy class of $(\mathcal{P}, \mathcal{L}, (\mathcal{C}_{\mathrm{cusp}}, \mathcal{F}_{\mathrm{cusp}}))$ is called the cuspidal support of $(\mathcal{C}, \mathcal{F})$.
- Let $\rho \in \operatorname{Irr}(A_{\mathcal{G}}(u))$. The cuspidal support of (u, ρ) , denoted by $\operatorname{Sc}^{\mathcal{G}}(u, \rho)$, is defined to be

$$(\mathcal{L}, (v, \rho_{\mathrm{cusp}}))_{\mathcal{G}}$$
, where $v \in \mathcal{C}_{\mathrm{cusp}}$ and $\mathcal{F}_{\mathrm{cusp}} = \mathcal{F}_{\rho_{\mathrm{cusp}}}$. (2)

Definitions

Let φ be an L-parameter for G. For simplicity, we suppose that G is quasi-split (an analogous but more technical definition works for an arbitrary G). We set

- $\mathcal{G}_{\varphi} := \mathbb{Z}_{G^{\vee}}(\varphi(W_F))$: a (possibly disconnected) complex reductive group
- $u=u_{\varphi}:=arphi\left(1,\left(\begin{smallmatrix}1&1\\0&1\end{smallmatrix}\right)\right)$: unipotent element of \mathcal{G}_{φ}
- $\bullet \ A_{\mathcal{G}_{\varphi}}(u_{\varphi}) := \pi_0(\mathbf{Z}_{\mathcal{G}_{\varphi}}(u_{\varphi})).$

We have

$$S_{\varphi} \simeq A_{\mathcal{G}_{\varphi}}(u_{\varphi}). \tag{3}$$

Main idea:

(3) will allow us to use the generalized Springer correspondence for the complex group \mathcal{G}_{φ} in order to understand the structure of the *L*-packets for the *p*-adic group G.

Definition [A.-Moussaoui-Solleveld, 2018]

An enhanced L-parameter $(\varphi, \rho) \in \Phi_e$ is called cuspidal if the following properties hold:

- φ is discrete (i.e., $\varphi(W_F')$ is not contained in any proper Levi subgroup of G^{\vee} , where $W_F' = W_F \times \mathrm{SL}_2(\mathbb{C})$),
- (u_{φ}, ρ) is a cuspidal pair in \mathcal{G}_{ϕ} .

We denote by $\Phi_{\mathrm{e,cusp}}(G)$ the set of G^{\vee} -conjugacy of cuspidal enhanced L-parameters for G.

The role of the generalized Springer correspondence

The generalized Springer correspondence allows us to define a cuspidal support map

Sc:
$$\Phi_{e}(G) \rightarrow \bigcup_{L \text{ Levi de } G} \Phi_{e,\text{cusp}}(L)$$
. (4)

Remark

By the Jacobson–Morozov theorem, any unipotent element v of $\mathcal L$ can be extended (in a unique way up to $\mathrm{Z}_{\mathcal L}(v)^\circ$ -conjugation) to a homomorphism of algebraic groups

$$j_{\nu} \colon \mathrm{SL}_{2}(\mathbb{C}) \to \mathcal{L} \text{ satisfying } j_{\nu} \left(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix} \right) = \nu.$$

Definition of the map Sc

Let (φ, ρ) be an enhanced L-parameter for G. Its cuspidal support is defined to be

$$Sc(\varphi, \rho) := (Z_{G^{\vee}}(\mathcal{T}), (\varphi_{\nu}, \rho_{cusp}))$$

where $(\mathcal{L}, \mathbf{v}, \rho_{\mathrm{cusp}})_{\mathcal{G}_{\varphi}}$ is the cuspidal support of (u_{φ}, ρ) , $\mathcal{T} := \mathbf{Z}_{\mathcal{L}}^{\circ}$, and $\varphi_{\mathbf{v}}$ is defined by

$$\varphi_{\nu}(w,x) := \varphi(w,1) \cdot \chi_{\varphi,\nu}(\|w\|^{1/2}) \cdot j_{\nu}(x) \quad \text{for all } w \in W_F, \ x \in \mathrm{SL}_2(\mathbb{C})$$

with

$$\chi_{\varphi, \mathsf{v}} \colon \mathsf{z} \mapsto \varphi \left(1, \left(\begin{smallmatrix} \mathsf{z} & \mathsf{0} \\ \mathsf{0} & \mathsf{z}^{-1} \end{smallmatrix} \right) \right) \cdot j_{\mathsf{v}} \left(\begin{smallmatrix} \mathsf{z}^{-1} & \mathsf{0} \\ \mathsf{0} & \mathsf{z} \end{smallmatrix} \right) \qquad \text{for } \mathsf{z} \in \mathbb{C}^{\times}.$$