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Overview: Computational Mathematics and AI
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Module Lectures Theme
ML Crash Course 1-3 Architectures, optimization, generalization
ApplMath for ML 4-6 Theory, regularization, PDEs
ML for ApplMath 7-10 Operators, inverse problems, discovery
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Reading List: Lecture 1
Historical Context: Machine learning builds on centuries of mathematical
foundations: from Gauss’s least squares (1809) to modern optimization theory.

Key Readings:
1. Mitchell (1997) – Machine Learning, McGraw-Hill.

Core ML definition and foundational concepts.

2. Wolpert and Macready (1997) – No Free Lunch Theorems.
Fundamental limits of learning algorithms.

3. Higham and Higham (2019) – Deep Learning for Applied Mathematicians.
Bridges applied math and deep learning.

4. Belkin (2021) – Fit without Fear.
Discovery of the double descent phenomenon.

5. Ferguson et al. (2025) – The Future of AI and Mathematical & Physical Sciences.
Workshop report highlighting mathematics role in AI.

Lecture Outline: What is ML?→ Learning Tasks→ Bias-Variance & Double Descent
→ Course Overview
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Motivation
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Starting Point: 2024 Nobel Prizes

▶ Statistical mechanics +
neuroscience

▶ Foundational methods for AI
▶ Science→ AI

▶ Curated chemical & biological data
▶ AlphaFold: protein design &

prediction
▶ Science↔ AI

Both built on decades of basic research in math and physical sciences

Title Intro What is ML? Tasks Theory Σ 5



lruthot@emory.edu Comp Math and AI @ ML Overview

NSF Workshop on AI and Math & Physical Sciences

Workshop Methodology
▶ ≈60 invited experts across MPS domains
▶ Online surveys + in-person discussions
▶ Cross-cutting themes identification
▶ Topic-specific breakout sessions
▶ Draft report circulated for feedback

Key Discussion Areas
▶ AI capabilities driving scientific innovation
▶ Barriers to wider AI adoption in MPS
▶ Underutilized AI techniques in science
▶ New AI capabilities needed for discovery

Report available: Ferguson et al. 2025
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Mathematics: The Foundational Backbone of AI

Optimization Theory
▶ Gradient descent and variants
▶ Stochastic optimization (SGD, Adam)
▶ Non-convex landscape analysis
▶ Convergence guarantees

Statistical Learning
▶ Generalization theory
▶ PAC-Bayes framework
▶ Empirical risk minimization
▶ Concentration inequalities

Approximation Theory
▶ Universal approximation theorems
▶ Function spaces and norms
▶ Spectral methods
▶ Kernel methods and RKHS

Linear Algebra
▶ Matrix factorizations
▶ Eigenvalue problems
▶ Randomized algorithms
▶ High-dimensional geometry

AI builds upon strong foundation in mathematics and statistics
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Computational Mathematics Opportunities
Where computational math meets AI: A rich research landscape

Numerical Optimization
▶ Distributed optimization algorithms
▶ Non-convex optimization theory
▶ Adaptive learning rate schedules

Numerical Linear Algebra
▶ Randomized algorithms for ML
▶ Preconditioning strategies
▶ Low-rank approximations

Algorithm Discovery
▶ AI-discovered numerical schemes
▶ Adaptive discretizations
▶ DARPA DIAL program initiatives

Numerical PDEs & AI
▶ Physics-informed neural networks
▶ Neural operator learning
▶ Interpreting AI via PDEs

High-Dimensional Problems
▶ Monte Carlo + deep learning
▶ Stochastic differential equations
▶ Control problems in high dimensions

Uncertainty Quantification
▶ Bayesian computational methods
▶ Error analysis for AI models
▶ Generalization bounds

Course goal: Give a glimpse into these intersections
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Lecture 1 Roadmap

1. What is Machine Learning?
▶ ML as approximation science
▶ Mathematical framework

2. Learning Tasks
▶ Survey: Supervised, unsupervised, operator, RL, generative

3. Learning Theory
▶ Classical: Bias-variance tradeoff
▶ Demo: Polynomial fitting
▶ Modern: Double descent phenomenon

4. Course Structure
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What is Machine Learning?
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Machine Learning: Core Definition

Mitchell (1997)

A program learns from experience E with respect to task T and
performance measure P, if performance at T (measured by P)
improves with experience E

ML as Approximation Science:
▶ Find functions that approximate relationships in data
▶ Balance approximation quality vs. generalization
▶ Trade-off between model complexity and data fit

Historical Connections:
▶ Gauss (1809): Least squares method
▶ Fisher (1922): Maximum likelihood estimation

ML = data-driven approximation theory
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No Free Lunch Theorem
Wolpert (1997)

Without assumptions or prior knowledge, no learning algorithm
generalizes better than any other (averaged over all problems)

Implications:
▶ Domain knowledge is essential
▶ Must match methods to problem characteristics
▶ Success requires exploiting problem structure

The Virtuous Cycle Exploits This:
▶ Computational math provides domain knowledge
▶ Scientific ML methods exploit structure
▶ Symmetries, conservation laws, multi-scale behavior

Understand AI

Use & Apply AI

Analyze & Evaluate AI
Create AI

Generic methods fail; domain expertise wins; AI literacy is key
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Mathematical Framework: Linear Regression
Setup: Data {(xi, yi)}n

i=1 with xi ∈ Rd, yi ∈ R.
Model: fθ(x) = x⊤θ Hypothesis class: {fθ : θ ∈ Rd} Goal: Find optimal θ

Optimization View

Minimize empirical squared error:

min
θ

1
n
∥Xθ − y∥2

2︸ ︷︷ ︸
empirical risk L̂(θ)

X ∈ Rn×d (rows = samples), y ∈ Rn

Statistical View
Minimize expected risk:

min
θ

E(x,y)[(fθ(x)− y)2]︸ ︷︷ ︸
expected risk L(θ)

noise model y = x⊤θ∗ + ε, ε ∼ N (0, σ2)

Optimality Condition:

θ̂ = (X⊤X)−1X⊤y (Normal Equations)

Same optimality condition but different tools yield different results
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Learning Tasks
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Supervised Learning: Learn from Labeled Examples

Problem: Given {(xi, yi)}n
i=1, find Fθ(x) ≈ y

Example: Next Token Prediction (LLMs)
▶ Input x: tokens “The cat sat on the”
▶ Output y: next token “mat”
▶ Learn: distribution over vocabulary

Computational Math Connections:
▶ Function approximation theory
▶ Regularization & inverse problems
▶ Optimization algorithms

→ Lectures 2-3: Architectures & Learning

Godoy (CC BY 4.0)

key insight: Most common ML task — foundation for classification & regression
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Unsupervised Learning: Discover Hidden Structure

Problem: Given unlabeled {xi}n
i=1, discover

structure: z = E(x), x̂ = D(z) ≈ x
Example: Autoencoders
▶ Encoder E: x ∈ Rd → z ∈ Rk (k≪ d)
▶ Decoder D: reconstruct x̂ from z
▶ Learn: compact latent representation

Computational Math Connections:
▶ Spectral methods (PCA = linear AE)
▶ Manifold learning & diff. geometry
▶ Dimensionality reduction for PDEs

x

z

x̂

E D

Rd

Rk

Rd

key insight: Find low-dimensional structure without labels
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Operator Learning: Maps Between Function Spaces
Problem: Learn G : U → V between function
spaces, e.g., G : κ(·) 7→ u(·)
Example: Darcy Flow (Lecture 7)
▶ Input κ: permeability field
▶ Output u: pressure/solution field
▶ PDE: −∇ · (κ∇u) = f

Computational Math Connections:
▶ Green’s functions & integral operators
▶ Many-query: UQ, inverse, control
▶ Surrogate modeling

→ Lectures 7: Scientific ML for PDEs

Gθ Gθ

κ1 κ2

u1 u2

key insight: Amortize PDE solves — train once, evaluate many times
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Reinforcement Learning: Learn from Interaction

Problem: Learn policy π : S → A maximizing
reward E

[∑T
t=0 r(st, at)

]
Example: Matrix Mult. (AlphaTensor)
▶ State s: tensor to decompose
▶ Action a: rank-1 elimination
▶ Result: 4× 4 in 47 mults (was 49)

Computational Math Connections:
▶ Optimal control & dynamic programming
▶ Hamilton-Jacobi-Bellman equations
▶ Algorithm discovery (DARPA DIAL)

→ Lecture 8: High-Dim Optimal Control
→ Lecture 10: Math Discovery with AI

Environment

Agent

A
ct
io
n

Interpreter

Reward

State

”Intelligence means having a goal” – Richard Sutton
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Generative Modeling: Learn Probability Distributions

Problem: Given samples {xi} ∼ pdata, learn
pθ ≈ pdata

Example: Posterior Distributions
▶ Observations y, model y = F(θ) + ϵ
▶ Learn: posterior p(θ|y)
▶ Use: diffusion models as learned priors

Computational Math Connections:
▶ Optimal transport theory
▶ SDEs & Fokker-Planck equations
▶ Flow matching & continuity equations

→ Lecture 6: Generative Modeling via PDEs
→ Lecture 9: Bayesian Inverse Problems

X

Z

gθ(Z)
g θ

How to match?

Learning complex probabilit distributions: useful foundation for Bayesian
inference
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A Glimpse into Learning Theory
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Classical Learning Theory: Capacity and Generalization
Model Capacity: How complex can a hypothesis class be?

VC Dimension: Maximum n points
that can be shattered
▶ Linear classifiers in Rd: VC dim

= d + 1
▶ Polynomials of degree p: VC dim

= p + 1

Bias-Variance Decomposition:

E[(f̂ − y)2]︸ ︷︷ ︸
Test Error

= Bias2︸ ︷︷ ︸
underfit

+ Var︸︷︷︸
overfit

+σ2

▶ Bias: Error from model assumptions
▶ Variance: Sensitivity to training data

Complexity

B
es
t
M
o
d
el

Bias2

Variance

Total Error

Classical advice: Choose capacity to balance bias and variance
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Classical Learning Theory: Polynomial Fitting
Setup: Fit Legendre polynomials to 5 noisy data points from f (x) = sin(2πx)

−1 −0.5 0 0.5 1

−1

0

1

x

y

Truth: sin(2πx)

Data (n = 5)

Question: How does polynomial degree affect fit quality?
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Classical Learning Theory: Polynomial Fitting
Setup: Fit Legendre polynomials to 5 noisy data points from f (x) = sin(2πx)
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Fitted Polynomials

Truth Data (n = 5) d = 1

d = 2 d = 3 d = 4

1 2 3 4
0

0.5

1

1.5

2

2.5

3

d
=

n
−

1

Peak!

Degree d

L
2
R
el
at
iv
e
E
rr
or

Generalization Performance

Classical wisdom: pick d < 4 to
avoid overfitting and oscillations
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Double Descent: The Overparameterized Regime
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y

Polynomial Fits: Under, Interp., Optimal

Truth Data d = 1 d = 4

d = 10
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Double Descent Phenomenon

Result: Overparameterization
improves generalization via implicit

regularization

Title Intro What is ML? Tasks Theory Σ 24



lruthot@emory.edu Comp Math and AI @ ML Overview

Why Does Double Descent Happen?

1 2 3 4 5
10−2

10−1

100

101

Index r

d = 3 (Under)

1 2 3 4 5
10−2

10−1

100

101

Index r

d = 4 (Interp)

1 2 3 4 5
10−2

10−1

100

101

Index r

d = 10 (Over)

σr

|u⊤
r y|/σr

Underparameterized

θ = (X⊤X)−1X⊤y

Threshold

θ = X−1y
Overparameterized

θ = X⊤(XX⊤)−1y

At threshold: small σr values amplify noise in poorly-sampled directions

Minimum norm bias in overparameterized regime acts as implicit regularization
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Regularization: The Practical Solution

Explicit Regularization

Ridge Regression (L2):

min
θ
∥Xθ − y∥2

2 + λ∥θ∥2
2

Solution:

θ̂ = (X⊤X + λI)−1X⊤y

▶ λI reduces influence of small σ
▶ established techniques to tune λ

Implicit Regularization

Gradient Descent:
▶ Zero initialization
▶ Iterative updates
▶ Converges to minimum norm

solution
Overparameterized (P≫ N):

θ̂ = X⊤(XX⊤)−1y

Algorithm chooses simpler solution

Need to understand regularization to understand generalization
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Connection to Computational Mathematics
Ridge Regression = Tikhonov Regularization = Weight Decay
▶ Familiar tool for ill-posed inverse problems
▶ Stabilizes inversion of near-singular matrices
▶ Same mathematical principle in ML and comp math!

Modern Deep Learning:
▶ Relies on over-parameterization and implicit regularization
▶ SGD noise acts as regularizer
▶ Architecture choices matter (inductive bias)
▶ No explicit λ parameter needed (but other hyperparameters)

Forward Connections:
▶ Lecture 4: Implicit regularization of SGD
▶ Lecture 5: Advanced optimization methods

Computational mathematics provides tools to understand modern ML
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Modern Phenomena Beyond Double Descent
Scaling Laws:
▶ Empirical power law relationships
▶ Performance vs. model size, dataset size, compute
▶ Example: GPT scaling laws, Chinchilla scaling
▶ Test-time compute scaling: More inference compute→ better performance

Implicit Regularization:
▶ Gradient descent finds ”good” solutions without explicit penalties
▶ Zero initialization + GD→ minimum norm solution
▶ SGD noise acts as implicit regularizer

These phenomena reappear throughout the course
▶ Developing mathematical tools for rigorous understanding

Modern ML challenges classical intuition
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Course Overview and Summary
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Course Structure: 10 Lectures, 3 Modules

Module 1: Crash Course

L1: ML Overview
▶ Learning tasks

▶ Double descent

L2: Learning Problems
▶ MLPs, GNNs, Transformers

▶ ResNets, Neural ODEs

▶ Loss functions

L3: Optimization
▶ Empirical vs. expected risk

Module 2: CM→ AI

L4: Stochastic Optimization
▶ Convergence

▶ Implicit regularization

L5: Loss Landscapes
▶ Adaptive methods

▶ Modern optimization

L6: Generative Modeling
▶ PDEs, optimal transport

▶ Diffusion, flow matching

Module 3: CM← AI

L7: Scientific ML
▶ PINNs, neural operators

▶ learned solvers

L8: High-Dim PDEs
▶ Curse of dimensionality

▶ Deep BSDE, FBSDE, HJB

L9: Inverse Problems
▶ Simulation based inference

▶ Diffusion priors

L10: Math Discovery
▶ Evolutionary coding

▶ Proof assistants
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Course Philosophy and Expectations
What this course IS:
▶ Illustrative: Representative examples

from different topics
▶ Bidirectional: CompMath↔ AI synergy
▶ Hands-on: Numerical experiments and

computational demos
▶ Research-oriented: Active frontiers,

open problems

What this course is NOT:
▶ Comprehensive: 10 lectures cannot

cover everything
▶ Pure theory: Balance rigor with intuition
▶ Software engineering: Concepts over

production code
▶ Latest & greatest: Field evolves faster

than curricula

Our approach:
▶ Pick characteristic issues from each research direction
▶ Guide you into the field, not exhaustive coverage
▶ Complement with workshop research talks
▶ Equip you to read papers and start your own projects

goal: Mathematical foundations + computational tools for CM+AI research
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Cross-Cutting Themes

Watch for these recurring themes:
▶ Data Efficiency: Methods for limited, structured datasets

▶ Manifold learning, sparse recovery, nonlinear approximation
▶ Uncertainty Quantification: Characterizing prediction confidence

▶ Bayesian approaches, Monte Carlo, polynomial chaos
▶ Multi-Scale Simulations: Bridging temporal/spatial scales

▶ Homogenization, multigrid, closure models
▶ Physics-Informed Methods: Combining ML with mechanistic models

▶ PINNs, neural ODEs, differentiable physics
▶ Curse of Dimensionality: How DNNs succeed in high dimensions

▶ Compositional structure, low-dimensional manifolds
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Σ: Computational Mathematics and AI Overview

Linear
Algebra Optimization PDEs

Approx.
Theory Statistics

Probability

Comp
Math

AI

Rigorous Tools
New Capabilities

Questions or
Feedback?

slido.com
#CBMS25

Concepts
▶ ML = approximation theory + data
▶ Bidirectional exchange: CompMath↔ AI
▶ Five learning paradigms
▶ Bias-variance vs. double descent
▶ Regularization (explicit & implicit)

Insights
▶ Overparameterization ̸= overfitting
▶ Minimum norm = implicit regularization
▶ Classical intuition needs updating
▶ No Free Lunch
▶ Domain knowledge/AI literacy matters
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