

Computational Mathematics and AI

Lecture 1: Machine Learning Overview

Lars Ruthotto

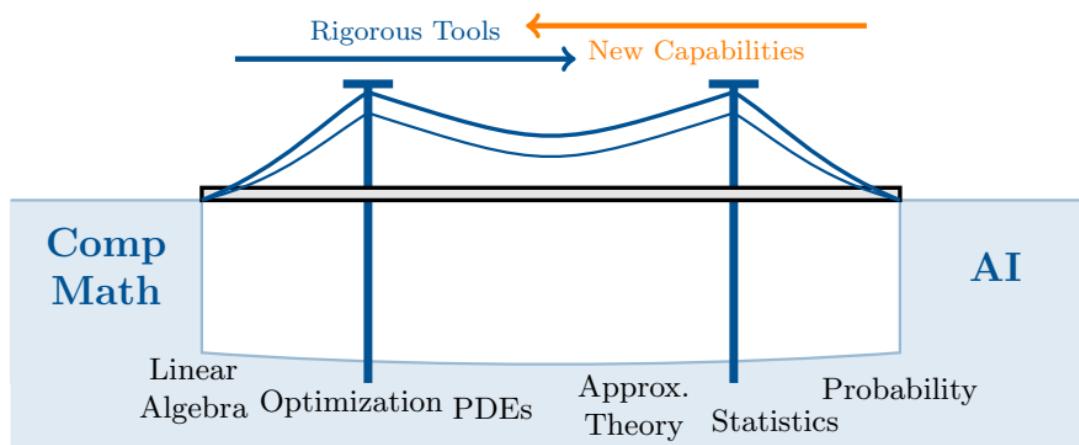
Departments of Mathematics and Computer Science

lruthotto@emory.edu

 [larsruthotto](https://www.linkedin.com/in/larsruthotto)

[slido.com #CBMS25](https://www.slido.com/#CBMS25)

Overview: Computational Mathematics and AI



Questions or
Feedback:

slido.com
#CBMS25

Module	Lectures	Theme
ML Crash Course	1-3	Architectures, optimization, generalization
ApplMath for ML	4-6	Theory, regularization, PDEs
ML for ApplMath	7-10	Operators, inverse problems, discovery

Reading List: Lecture 1

Historical Context: Machine learning builds on centuries of mathematical foundations: from Gauss's least squares (1809) to modern optimization theory.

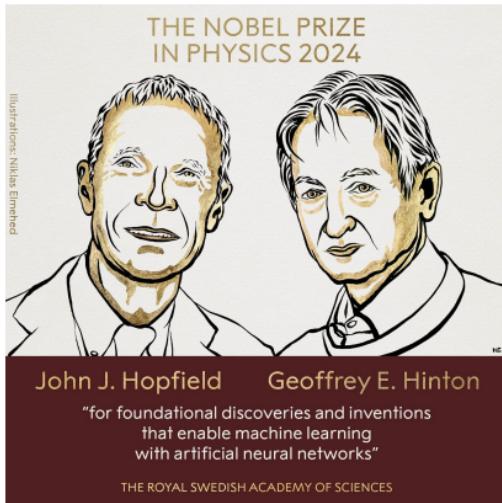
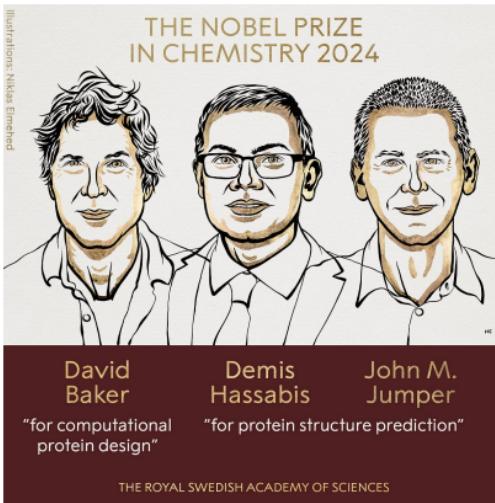
Key Readings:

1. Mitchell (1997) – *Machine Learning*, McGraw-Hill.
Core ML definition and foundational concepts.
2. Wolpert and Macready (1997) – No Free Lunch Theorems.
Fundamental limits of learning algorithms.
3. Higham and Higham (2019) – Deep Learning for Applied Mathematicians.
Bridges applied math and deep learning.
4. Belkin (2021) – Fit without Fear.
Discovery of the double descent phenomenon.
5. Ferguson et al. (2025) – The Future of AI and Mathematical & Physical Sciences.
Workshop report highlighting mathematics role in AI.

Lecture Outline: What is ML? → Learning Tasks → Bias-Variance & Double Descent
→ Course Overview

Motivation

Starting Point: 2024 Nobel Prizes



- ▶ Statistical mechanics + neuroscience
- ▶ Foundational methods for AI
- ▶ **Science → AI**
- ▶ Curated chemical & biological data
- ▶ AlphaFold: protein design & prediction
- ▶ **Science ↔ AI**

Both built on **decades of basic research** in math and physical sciences

NSF Workshop on AI and Math & Physical Sciences

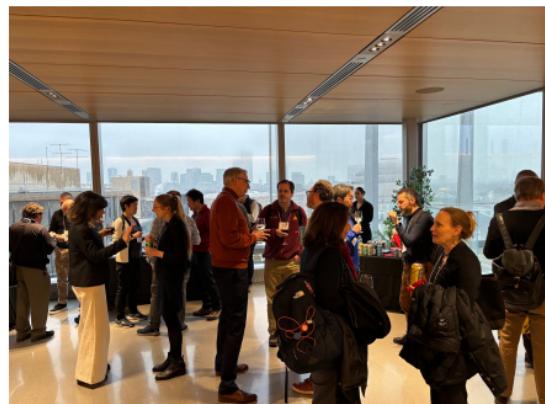
Workshop Methodology

- ▶ ≈60 invited experts across MPS domains
- ▶ Online surveys + in-person discussions
- ▶ Cross-cutting themes identification
- ▶ Topic-specific breakout sessions
- ▶ Draft report circulated for feedback

Key Discussion Areas

- ▶ AI capabilities driving scientific innovation
- ▶ Barriers to wider AI adoption in MPS
- ▶ Underutilized AI techniques in science
- ▶ New AI capabilities needed for discovery

Report available: Ferguson et al. 2025



Mathematics: The Foundational Backbone of AI

Optimization Theory

- ▶ Gradient descent and variants
- ▶ Stochastic optimization (SGD, Adam)
- ▶ Non-convex landscape analysis
- ▶ Convergence guarantees

Approximation Theory

- ▶ Universal approximation theorems
- ▶ Function spaces and norms
- ▶ Spectral methods
- ▶ Kernel methods and RKHS

Statistical Learning

- ▶ Generalization theory
- ▶ PAC-Bayes framework
- ▶ Empirical risk minimization
- ▶ Concentration inequalities

Linear Algebra

- ▶ Matrix factorizations
- ▶ Eigenvalue problems
- ▶ Randomized algorithms
- ▶ High-dimensional geometry

AI builds upon strong foundation in mathematics and statistics

Computational Mathematics Opportunities

Where computational math meets AI: A rich research landscape

Numerical Optimization

- ▶ Distributed optimization algorithms
- ▶ Non-convex optimization theory
- ▶ Adaptive learning rate schedules

Numerical Linear Algebra

- ▶ Randomized algorithms for ML
- ▶ Preconditioning strategies
- ▶ Low-rank approximations

Algorithm Discovery

- ▶ AI-discovered numerical schemes
- ▶ Adaptive discretizations
- ▶ DARPA DIAL program initiatives

Numerical PDEs & AI

- ▶ Physics-informed neural networks
- ▶ Neural operator learning
- ▶ Interpreting AI via PDEs

High-Dimensional Problems

- ▶ Monte Carlo + deep learning
- ▶ Stochastic differential equations
- ▶ Control problems in high dimensions

Uncertainty Quantification

- ▶ Bayesian computational methods
- ▶ Error analysis for AI models
- ▶ Generalization bounds

Course goal: Give a glimpse into these intersections

Lecture 1 Roadmap

1. What is Machine Learning?
 - ▶ ML as approximation science
 - ▶ Mathematical framework
2. Learning Tasks
 - ▶ Survey: Supervised, unsupervised, operator, RL, generative
3. Learning Theory
 - ▶ Classical: Bias-variance tradeoff
 - ▶ Demo: Polynomial fitting
 - ▶ Modern: Double descent phenomenon
4. Course Structure

What is Machine Learning?

Machine Learning: Core Definition

Mitchell (1997)

A program **learns** from experience E with respect to task T and performance measure P , if performance at T (measured by P) improves with experience E

ML as Approximation Science:

- ▶ Find functions that approximate relationships in data
- ▶ Balance approximation quality vs. generalization
- ▶ Trade-off between model complexity and data fit

Historical Connections:

- ▶ Gauss (1809): Least squares method
- ▶ Fisher (1922): Maximum likelihood estimation

ML = data-driven approximation theory

No Free Lunch Theorem

Wolpert (1997)

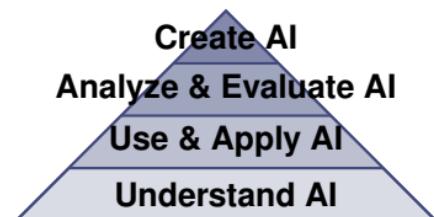
Without assumptions or prior knowledge, no learning algorithm generalizes better than any other (averaged over all problems)

Implications:

- Domain knowledge is *essential*
- Must match methods to problem characteristics
- Success requires exploiting problem structure

The Virtuous Cycle Exploits This:

- Computational math provides domain knowledge
- Scientific ML methods exploit structure
- Symmetries, conservation laws, multi-scale behavior



Generic methods fail; domain expertise wins; AI literacy is key

Mathematical Framework: Linear Regression

Setup: Data $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^n$ with $\mathbf{x}_i \in \mathbb{R}^d$, $\mathbf{y}_i \in \mathbb{R}$.

Model: $f_{\theta}(\mathbf{x}) = \mathbf{x}^T \theta$ **Hypothesis class:** $\{f_{\theta} : \theta \in \mathbb{R}^d\}$ **Goal:** Find optimal θ

Optimization View

Minimize empirical squared error:

$$\min_{\theta} \underbrace{\frac{1}{n} \|\mathbf{X}\theta - \mathbf{y}\|_2^2}_{\text{empirical risk } \hat{L}(\theta)}$$

$\mathbf{X} \in \mathbb{R}^{n \times d}$ (rows = samples), $\mathbf{y} \in \mathbb{R}^n$

Statistical View

Minimize expected risk:

$$\min_{\theta} \underbrace{\mathbb{E}_{(\mathbf{x}, \mathbf{y})} [(f_{\theta}(\mathbf{x}) - \mathbf{y})^2]}_{\text{expected risk } L(\theta)}$$

noise model $\mathbf{y} = \mathbf{x}^T \theta^* + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \sigma^2)$

Optimality Condition:

$$\hat{\theta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} \quad (\text{Normal Equations})$$

Same optimality condition but different tools yield different results

Learning Tasks

Supervised Learning: Learn from Labeled Examples

Problem: Given $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^n$, find $F_{\theta}(\mathbf{x}) \approx \mathbf{y}$

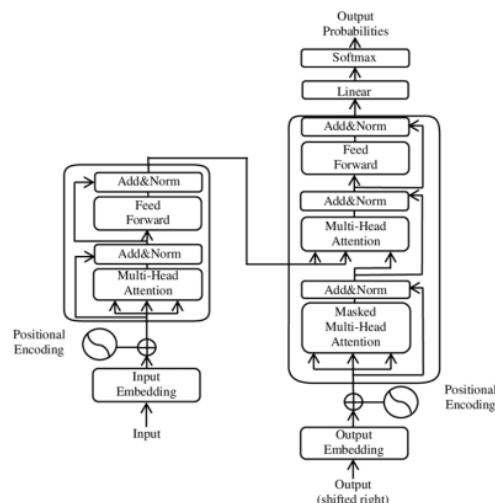
Example: Next Token Prediction (LLMs)

- ▶ Input \mathbf{x} : tokens “The cat sat on the”
- ▶ Output \mathbf{y} : next token “mat”
- ▶ Learn: distribution over vocabulary

Computational Math Connections:

- ▶ Function approximation theory
- ▶ Regularization & inverse problems
- ▶ Optimization algorithms

→ [Lectures 2-3: Architectures & Learning](#)



Godoy (CC BY 4.0)

key insight: Most common ML task — foundation for classification & regression

Unsupervised Learning: Discover Hidden Structure

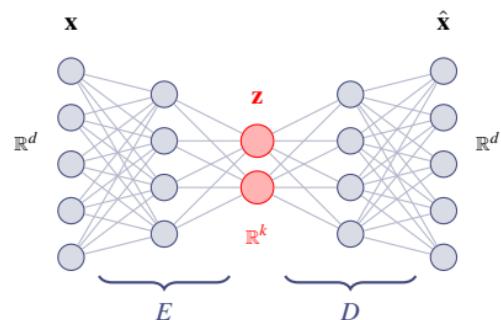
Problem: Given unlabeled $\{\mathbf{x}_i\}_{i=1}^n$, discover structure: $\mathbf{z} = E(\mathbf{x})$, $\hat{\mathbf{x}} = D(\mathbf{z}) \approx \mathbf{x}$

Example: Autoencoders

- ▶ Encoder E : $\mathbf{x} \in \mathbb{R}^d \rightarrow \mathbf{z} \in \mathbb{R}^k$ ($k \ll d$)
- ▶ Decoder D : reconstruct $\hat{\mathbf{x}}$ from \mathbf{z}
- ▶ Learn: compact latent representation

Computational Math Connections:

- ▶ Spectral methods (PCA = linear AE)
- ▶ Manifold learning & diff. geometry
- ▶ Dimensionality reduction for PDEs



key insight: Find low-dimensional structure without labels

Operator Learning: Maps Between Function Spaces

Problem: Learn $\mathcal{G} : \mathcal{U} \rightarrow \mathcal{V}$ between function spaces, e.g., $\mathcal{G} : \kappa(\cdot) \mapsto u(\cdot)$

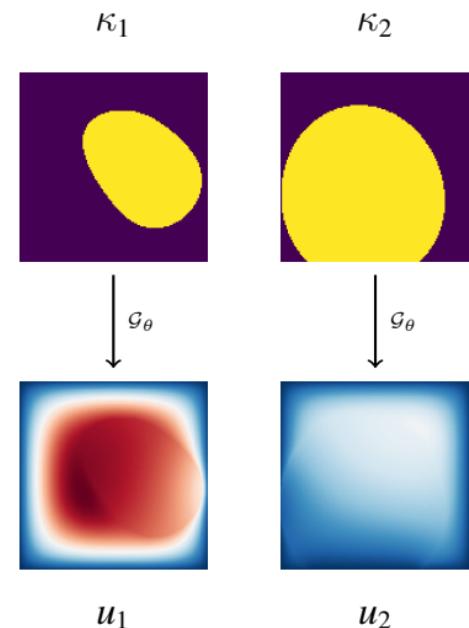
Example: Darcy Flow (Lecture 7)

- ▶ Input κ : permeability field
- ▶ Output u : pressure/solution field
- ▶ PDE: $-\nabla \cdot (\kappa \nabla u) = f$

Computational Math Connections:

- ▶ Green's functions & integral operators
- ▶ Many-query: UQ, inverse, control
- ▶ Surrogate modeling

→ [Lectures 7: Scientific ML for PDEs](#)



key insight: Amortize PDE solves — train once, evaluate many times

Reinforcement Learning: Learn from Interaction

Problem: Learn policy $\pi : \mathcal{S} \rightarrow \mathcal{A}$ maximizing
reward $\mathbb{E} \left[\sum_{t=0}^T r(s_t, a_t) \right]$

Example: Matrix Mult. (AlphaTensor)

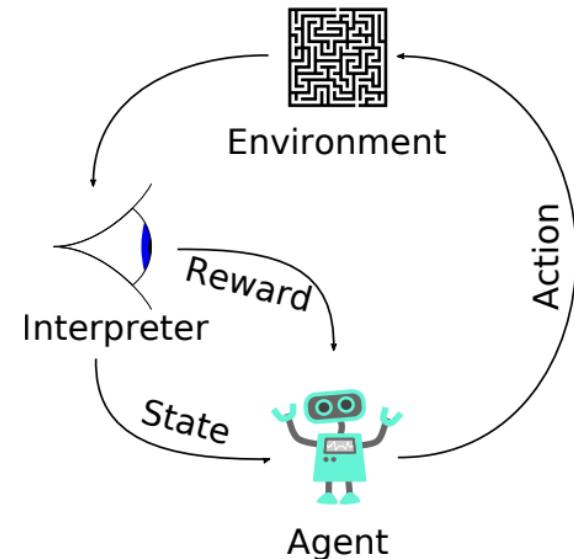
- ▶ State s : tensor to decompose
- ▶ Action a : rank-1 elimination
- ▶ Result: 4×4 in 47 mults (was 49)

Computational Math Connections:

- ▶ Optimal control & dynamic programming
- ▶ Hamilton-Jacobi-Bellman equations
- ▶ Algorithm discovery (DARPA DIAL)

→ Lecture 8: High-Dim Optimal Control

→ Lecture 10: Math Discovery with AI



”Intelligence means having a goal” – Richard Sutton

Generative Modeling: Learn Probability Distributions

Problem: Given samples $\{\mathbf{x}_i\} \sim p_{\text{data}}$, learn $p_{\theta} \approx p_{\text{data}}$

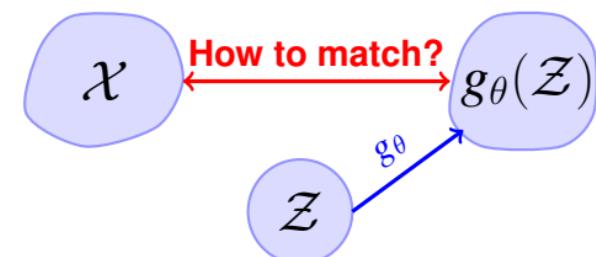
Example: Posterior Distributions

- ▶ Observations \mathbf{y} , model $\mathbf{y} = F(\boldsymbol{\theta}) + \epsilon$
- ▶ Learn: posterior $p(\boldsymbol{\theta}|\mathbf{y})$
- ▶ Use: diffusion models as learned priors

Computational Math Connections:

- ▶ Optimal transport theory
- ▶ SDEs & Fokker-Planck equations
- ▶ Flow matching & continuity equations

- Lecture 6: Generative Modeling via PDEs
- Lecture 9: Bayesian Inverse Problems



Learning complex probability distributions: useful foundation for Bayesian inference

A Glimpse into Learning Theory

Classical Learning Theory: Capacity and Generalization

Model Capacity: How complex can a hypothesis class be?

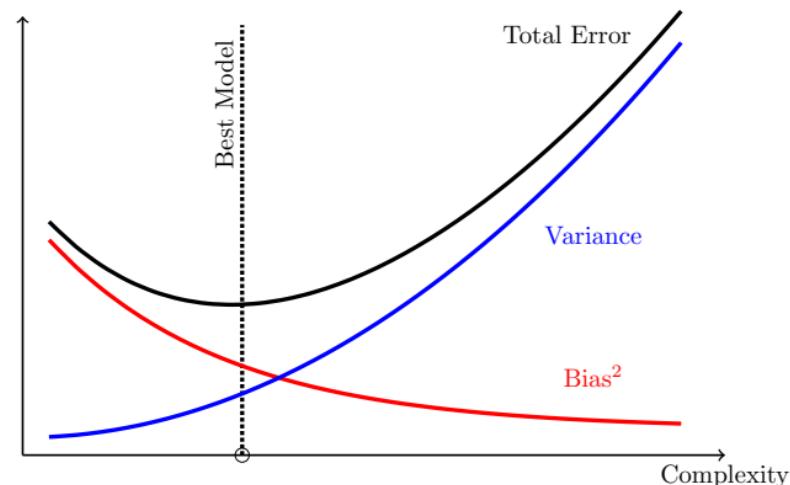
VC Dimension: Maximum n points that can be shattered

- ▶ Linear classifiers in \mathbb{R}^d : VC dim $= d + 1$
- ▶ Polynomials of degree p : VC dim $= p + 1$

Bias-Variance Decomposition:

$$\mathbb{E}[(\hat{f} - y)^2] = \underbrace{\text{Test Error}}_{\text{underfit}} + \underbrace{\text{Var}}_{\text{overfit}} + \sigma^2$$

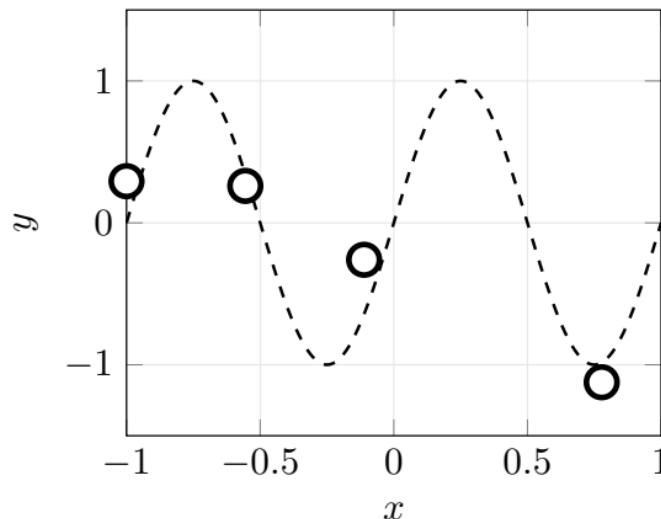
- ▶ **Bias:** Error from model assumptions
- ▶ **Variance:** Sensitivity to training data



Classical advice: Choose capacity to balance bias and variance

Classical Learning Theory: Polynomial Fitting

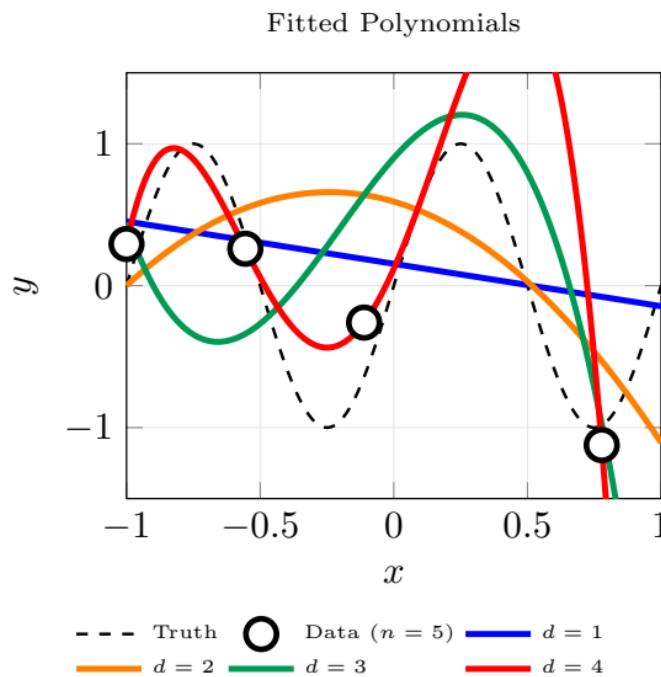
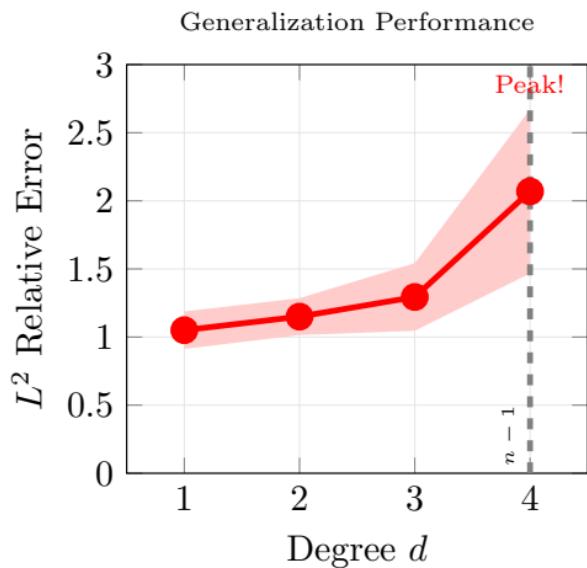
Setup: Fit Legendre polynomials to 5 noisy data points from $f(x) = \sin(2\pi x)$



Question: How does polynomial degree affect fit quality?

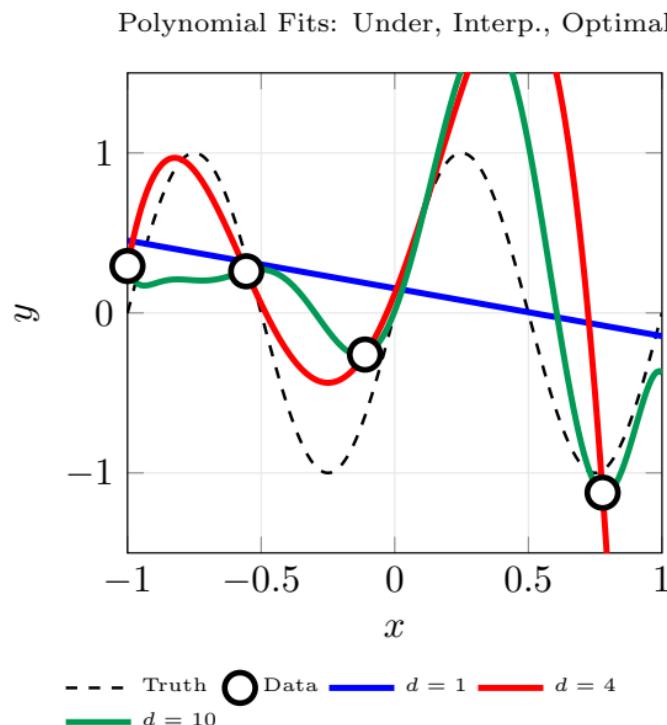
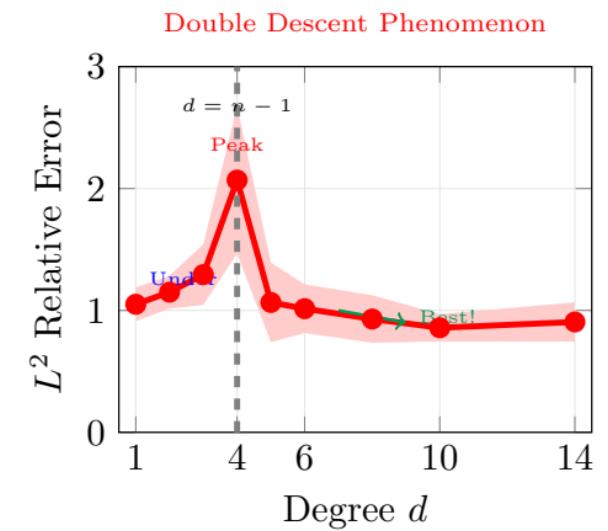
Classical Learning Theory: Polynomial Fitting

Setup: Fit Legendre polynomials to 5 noisy data points from $f(x) = \sin(2\pi x)$



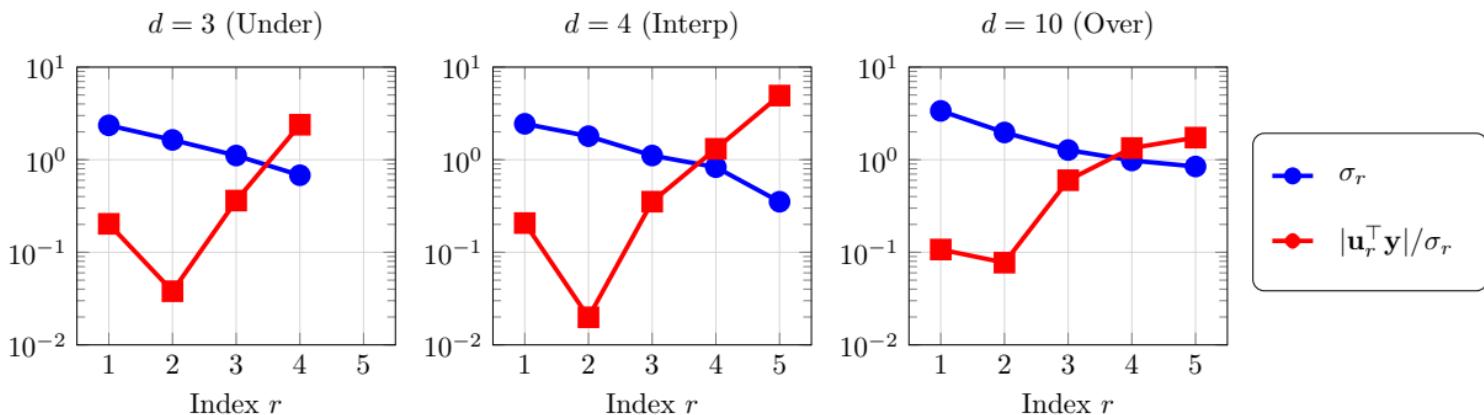
Classical wisdom: pick $d < 4$ to avoid overfitting and oscillations

Double Descent: The Overparameterized Regime



Result: Overparameterization improves generalization via implicit regularization

Why Does Double Descent Happen?



Underparameterized

$$\boldsymbol{\theta} = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}$$

Threshold

$$\boldsymbol{\theta} = \mathbf{X}^{-1} \mathbf{y}$$

Overparameterized

$$\boldsymbol{\theta} = \mathbf{X}^\top (\mathbf{X} \mathbf{X}^\top)^{-1} \mathbf{y}$$

At threshold: small σ_r values amplify noise in poorly-sampled directions

Minimum norm bias in overparameterized regime acts as implicit regularization

Regularization: The Practical Solution

Explicit Regularization

Ridge Regression (L2):

$$\min_{\theta} \|\mathbf{X}\theta - \mathbf{y}\|_2^2 + \lambda \|\theta\|_2^2$$

Solution:

$$\hat{\theta} = (\mathbf{X}^\top \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^\top \mathbf{y}$$

- ▶ $\lambda \mathbf{I}$ reduces influence of small σ
- ▶ established techniques to tune λ

Implicit Regularization

Gradient Descent:

- ▶ Zero initialization
- ▶ Iterative updates
- ▶ Converges to minimum norm solution

Overparameterized ($P \gg N$):

$$\hat{\theta} = \mathbf{X}^\top (\mathbf{X} \mathbf{X}^\top)^{-1} \mathbf{y}$$

Algorithm chooses simpler solution

Need to understand regularization to understand generalization

Connection to Computational Mathematics

Ridge Regression = Tikhonov Regularization = Weight Decay

- ▶ Familiar tool for ill-posed inverse problems
- ▶ Stabilizes inversion of near-singular matrices
- ▶ Same mathematical principle in ML and comp math!

Modern Deep Learning:

- ▶ Relies on over-parameterization and *implicit* regularization
- ▶ SGD noise acts as regularizer
- ▶ Architecture choices matter (inductive bias)
- ▶ No explicit λ parameter needed (but other hyperparameters)

Forward Connections:

- ▶ [Lecture 4: Implicit regularization of SGD](#)
- ▶ [Lecture 5: Advanced optimization methods](#)

Computational mathematics provides tools to understand modern ML

Modern Phenomena Beyond Double Descent

Scaling Laws:

- ▶ Empirical power law relationships
- ▶ Performance vs. model size, dataset size, compute
- ▶ Example: GPT scaling laws, Chinchilla scaling
- ▶ *Test-time compute scaling*: More inference compute → better performance

Implicit Regularization:

- ▶ Gradient descent finds "good" solutions without explicit penalties
- ▶ Zero initialization + GD → minimum norm solution
- ▶ SGD noise acts as implicit regularizer

These phenomena reappear throughout the course

- ▶ Developing mathematical tools for rigorous understanding

Modern ML challenges classical intuition

Course Overview and Summary

Course Structure: 10 Lectures, 3 Modules

Module 1: Crash Course

L1: ML Overview

- ▶ Learning tasks
- ▶ Double descent

L2: Learning Problems

- ▶ MLPs, GNNs, Transformers
- ▶ ResNets, Neural ODEs
- ▶ Loss functions

L3: Optimization

- ▶ Empirical vs. expected risk

Module 2: CM \rightarrow AI

L4: Stochastic Optimization

- ▶ Convergence
- ▶ Implicit regularization

L5: Loss Landscapes

- ▶ Adaptive methods
- ▶ Modern optimization

L6: Generative Modeling

- ▶ PDEs, optimal transport
- ▶ Diffusion, flow matching

Module 3: CM \leftarrow AI

L7: Scientific ML

- ▶ PINNs, neural operators
- ▶ learned solvers

L8: High-Dim PDEs

- ▶ Curse of dimensionality
- ▶ Deep BSDE, FBSDE, HJB

L9: Inverse Problems

- ▶ Simulation based inference
- ▶ Diffusion priors

L10: Math Discovery

- ▶ Evolutionary coding
- ▶ Proof assistants

Course Philosophy and Expectations

What this course IS:

- ▶ **Illustrative:** Representative examples from different topics
- ▶ **Bidirectional:** CompMath \leftrightarrow AI synergy
- ▶ **Hands-on:** Numerical experiments and computational demos
- ▶ **Research-oriented:** Active frontiers, open problems

What this course is NOT:

- ▶ **Comprehensive:** 10 lectures cannot cover everything
- ▶ **Pure theory:** Balance rigor with intuition
- ▶ **Software engineering:** Concepts over production code
- ▶ **Latest & greatest:** Field evolves faster than curricula

Our approach:

- ▶ Pick characteristic issues from each research direction
- ▶ Guide you into the field, not exhaustive coverage
- ▶ Complement with workshop research talks
- ▶ Equip you to read papers and start your own projects

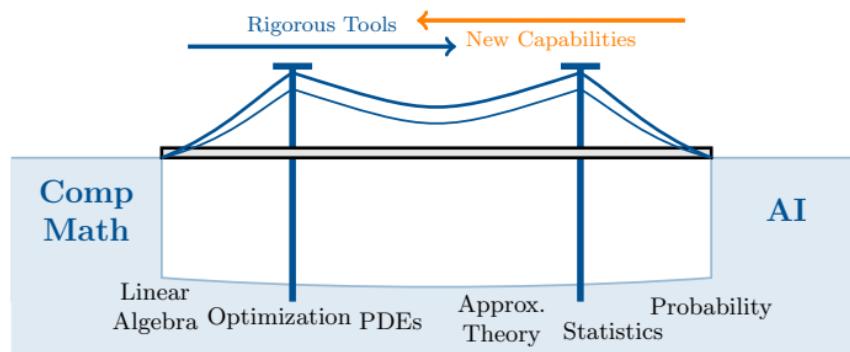
goal: Mathematical foundations + computational tools for CM+AI research

Cross-Cutting Themes

Watch for these recurring themes:

- ▶ **Data Efficiency:** Methods for limited, structured datasets
 - ▶ Manifold learning, sparse recovery, nonlinear approximation
- ▶ **Uncertainty Quantification:** Characterizing prediction confidence
 - ▶ Bayesian approaches, Monte Carlo, polynomial chaos
- ▶ **Multi-Scale Simulations:** Bridging temporal/spatial scales
 - ▶ Homogenization, multigrid, closure models
- ▶ **Physics-Informed Methods:** Combining ML with mechanistic models
 - ▶ PINNs, neural ODEs, differentiable physics
- ▶ **Curse of Dimensionality:** How DNNs succeed in high dimensions
 - ▶ Compositional structure, low-dimensional manifolds

Σ : Computational Mathematics and AI Overview



Questions or
Feedback?

slido.com
#CBMS25

Concepts

- ▶ ML = approximation theory + data
- ▶ Bidirectional exchange: CompMath \leftrightarrow AI
- ▶ Five learning paradigms
- ▶ Bias-variance vs. double descent
- ▶ Regularization (explicit & implicit)

Insights

- ▶ Overparameterization \neq overfitting
- ▶ Minimum norm = implicit regularization
- ▶ Classical intuition needs updating
- ▶ No Free Lunch
- ▶ Domain knowledge/AI literacy matters

References I

- Belkin, M. (2021). "Fit Without Fear: Remarkable Mathematical Phenomena of Deep Learning Through the Prism of Interpolation". In: *Acta Numerica* 30, pp. 203–248.
- Ferguson, A. et al. (2025). *The Future of Artificial Intelligence and the Mathematical and Physical Sciences (AI+MPS)*. arXiv: 2509.02661 [cs.AI]. URL: <https://arxiv.org/abs/2509.02661>.
- Higham, C. F. and D. J. Higham (2019). "Deep Learning: An Introduction for Applied Mathematicians". In: *SIAM Review* 61.4, pp. 860–891.
- Mitchell, T. M. (1997). *Machine Learning*. McGraw-Hill.
- Wolpert, D. H. and W. G. Macready (1997). "No Free Lunch Theorems for Optimization". In: *IEEE Transactions on Evolutionary Computation* 1.1, pp. 67–82.