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Overview: Computational Mathematics and Al

Rigorous Tools <

Questions or

3 New Capabilities
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Module Lectures Theme
ML Crash Course 1-3 Architectures, optimization, generalization
AppIMath for ML 4-6 Theory, regularization, PDEs
ML for ApplMath ~ 7-10 Operators, inverse problems, discovery
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Reading List: Lecture 1

Historical Context: Machine learning builds on centuries of mathematical
foundations: from Gauss’s least squares (1809) to modern optimization theory.

Key Readings:
1. Mitchell (1997) — Machine Learning, McGraw-Hill.
Core ML definition and foundational concepts.

2. Wolpert and Macready (1997) — No Free Lunch Theorems.
Fundamental limits of learning algorithms.

3. Higham and Higham (2019) — Deep Learning for Applied Mathematicians.
Bridges applied math and deep learning.

4. Belkin (2021) — Fit without Fear.

Discovery of the double descent phenomenon.

5. Ferguson et al. (2025) — The Future of Al and Mathematical & Physical Sciences.
Workshop report highlighting mathematics role in Al.

Lecture Outline: What is ML? — Learning Tasks — Bias-Variance & Double Descent
— Course Overview
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Motivation
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THE NOBEL PRIZE
IN CHEMISTRY 2024

John M
Hassabis Jur

“for computational “for protein structure prediction”
protein design”

John J. Hopfield Geoffrey E. Hinton
“for foundational discoveries and inventions
that enable machine learning
with artificial neural networks”

THE ROYAL SWEDISH ACADI THE ROYAL SWEDISH ACADEMY OF SCIENCES

» Statistical mechanics + » Curated chemical & biological data
neuroscience » AlphaFold: protein design &

» Foundational methods for Al prediction

» Science — Al » Science < Al

Both built on decades of basic research in math and physical sciences
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NSF Workshop on Al and Math & Physical Sciences

Workshop Methodology

» ~60 invited experts across MPS domains
Online surveys + in-person discussions
Cross-cutting themes identification
Topic-specific breakout sessions
Draft report circulated for feedback

vvyyy

Key Discussion Areas
» Al capabilities driving scientific innovation
» Barriers to wider Al adoption in MPS
» Underutilized Al techniques in science
» New Al capabilities needed for discovery
Report available: Ferguson et al. 2025
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Mathematics: The Foundational Backbone of Al

Optimization Theory Approximation Theory

» Gradient descent and variants » Universal approximation theorems

» Stochastic optimization (SGD, Adam) » Function spaces and norms

» Non-convex landscape analysis » Spectral methods

» Convergence guarantees » Kernel methods and RKHS
Statistical Learning Linear Algebra

» Generalization theory » Matrix factorizations

» PAC-Bayes framework » Eigenvalue problems

» Empirical risk minimization » Randomized algorithms

» Concentration inequalities » High-dimensional geometry

Al builds upon strong foundation in mathematics and statistics

Intro What is ML? Tasks
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Computational Mathematics Opportunities

Where computational math meets Al: A rich research landscape

Numerical Optimization Numerical PDEs & Al

» Distributed optimization algorithms » Physics-informed neural networks

» Non-convex optimization theory » Neural operator learning

» Adaptive learning rate schedules » Interpreting Al via PDEs
Numerical Linear Algebra High-Dimensional Problems

» Randomized algorithms for ML » Monte Carlo + deep learning

» Preconditioning strategies » Stochastic differential equations

» Low-rank approximations » Control problems in high dimensions
Algorithm Discovery Uncertainty Quantification

» Al-discovered numerical schemes » Bayesian computational methods

» Adaptive discretizations » Error analysis for Al models

» DARPA DIAL program initiatives » Generalization bounds

Course goal: Give a glimpse into these intersections
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Lecture 1 Roadmap

1. What is Machine Learning?

» ML as approximation science
» Mathematical framework

2. Learning Tasks
» Survey: Supervised, unsupervised, operator, RL, generative
3. Learning Theory

» Classical: Bias-variance tradeoff
» Demo: Polynomial fitting
» Modern: Double descent phenomenon

4. Course Structure

Comp Math and Al @ ML Overview
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What is Machine Learning?
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Machine Learning: Core Definition
Mitchell (1997)

A program learns from experience E with respect to task 7" and
performance measure P, if performance at 7 (measured by P)
improves with experience E

ML as Approximation Science:
» Find functions that approximate relationships in data
» Balance approximation quality vs. generalization
» Trade-off between model complexity and data fit

Historical Connections:
» Gauss (1809): Least squares method
» Fisher (1922): Maximum likelihood estimation

ML = data-driven approximation theory
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No Free Lunch Theorem
Wolpert (1997)

Without assumptions or prior knowledge, no learning algorithm
generalizes better than any other (averaged over all problems)

Implications:
» Domain knowledge is essential
» Must match methods to problem characteristics
» Success requires exploiting problem structure

The Virtuous Cycle Exploits This:
» Computational math provides domain knowledge
» Scientific ML methods exploit structure
» Symmetries, conservation laws, multi-scale behavior
Generic methods fail; domain expertise wins; Al literacy is key

Understand Al

Intro What is ML? Tasks
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Mathematical Framework: Linear Regression

Setup: Data {(x;,y;)}", withx; € R, y; € R.
Model: fo(x) = x'6 Hypothesis class: {f; : 0 € R} Goal: Find optimal 6

Optimization View Statistical View

Minimize empirical squared error: Minimize expected risk:
1 :
min X -y} min B [(fo(x) = ¥)7]
—— e
empirical risk L(8) expected risk L(6)
X € R (rows = samples), y € R noise modely = x'0* + ¢, ¢ ~ NV (0, 0?)
Optimality Condition:

6 = (X"X)"'X"y (Normal Equations)

Same optimality condition but different tools yield different results

Intro What is ML? Tasks
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Learning Tasks
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Supervised Learning: Learn from Labeled Examples

Problem: Given {(x;,y:)},, find Fg(x) =~ y
Example: Next Token Prediction (LLMs)

» Input x: tokens “The cat sat on the”
» Output y: next token “mat”
» Learn: distribution over vocabulary

Computational Math Connections:

» Function approximation theory ([ ]
» Regularization & inverse problems b
» Optimization algorithms i

— Lectures 2-3: Architectures & Learning

Output
(shified right)

Godoy (CC BY 4.0)

key insight: Most common ML task — foundation for classification & regression

Intro What is ML? Tasks
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Unsupervised Learning: Discover Hidden Structure

Problem: Given unlabeled {x;}!_,, discover x %
structure: z = E(x), X = D(z) ~ x o o)
O z O
Example: Autoencoders « © 0@ 0 O .
> Encoder E: x € R — z € R* (k < d) R e
» Decoder D: reconstruct x from z Oy & g9
» Learn: compact latent representation O NN O
E D

Computational Math Connections:

» Spectral methods (PCA = linear AE)
» Manifold learning & diff. geometry
» Dimensionality reduction for PDEs

key insight: Find low-dimensional structure without labels
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Operator Learning: Maps Between Function Spaces

Problem: Learn G : U/ — V between function
spaces, e.g9., G : k(-) — u(-) K1 Ko
Example: Darcy Flow (Lecture 7)
» Input x: permeability field
» OQutput u: pressure/solution field
» PDE: -V - (kVu) =f
Computational Math Connections:

» Green’s functions & integral operators
» Many-query: UQ, inverse, control
» Surrogate modeling

— Lectures 7: Scientific ML for PDEs
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Reinforcement Learning: Learn from Interaction

Problem: Learn policy 7 : S — .4 maximizing
reward E [ZLO r(s,, a,)] %
Example: Matrix Mult. (AlphaTensor) mvironment
» State s: tensor to decompose
» Action a: rank-1 elimination
> Result: 4 x 4 in 47 mults (was 49) <§ %
Interpreter

Computational Math Connections:

» Optimal control & dynamic programming % \@J
» Hamilton-Jacobi-Bellman equations =

» Algorithm discovery (DARPA DIAL)

— Lecture 8: High-Dim Optimal Control
— Lecture 10: Math Discovery with Al

Action

Agent

’Intelligence means having a goal” — Richard Sutton
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Generative Modeling: Learn Probability Distributions

Problem: Given sampl b~ , learn

oblem: Given samples {xi} ~ pata How to match?
Py = Pdata X K 5
Example: Posterior Distributions

%%
» Observations y, model y = F(0) + ¢
» Learn: posterior p(@|y)
» Use: diffusion models as learned priors

Computational Math Connections:

» Optimal transport theory
» SDEs & Fokker-Planck equations
» Flow matching & continuity equations

— Lecture 6: Generative Modeling via PDEs
— Lecture 9: Bayesian Inverse Problems

Learning complex probabilit distributions: useful foundation for Bayesian
inference
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A Glimpse into Learning Theory
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Classical Learning Theory: Capacity and Generalization
Model Capacity: How complex can a hypothesis class be?
VC Dimension: Maximum = points

that can be shattered

» Linear classifiers in R?: VC dim
=d+1

» Polynomials of degree p: VC dim

Total Error

Variance

Bias-Variance Decomposition:

7 21 Rima2 2
E[(f —y)"] = Bias® + Var +o

Test Error underfit  overfit

\ // Best Model

Complexity
» Bias: Error from model assumptions

» Variance: Sensitivity to training data

Classical advice: Choose capacity to balance bias and variance

Intro What is ML? Tasks
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Classical Learning Theory: Polynomial Fitting

Setup: Fit Legendre polynomials to 5 noisy data points from f(x) = sin(2mx)

]_ | 2N VRERN ]
/ \ 7 \
1 \ ’ \
1 \ 1 \
o 9 coo
1 \
p= 0 - \ 1 ‘\ 4
\ ]
\ O ' II
\ 1 \ 1
\ 1 \ 1
\ 7 \ 7
1 N ‘é |
| | |
-1 —0.5 0 0.5 1
T

Question: How does polynomial degree affect fit quality?
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Classical Learning Theory: Polynomial Fitting

Setup: Fit Legendre polynomials to 5 noisy data points from f(x) = sin(2mx)

Fitted Polynomials Generalization Performance

o
orow

Pehk!
1
1
1

5
=
|2 .
L 1
= -%15* '
s 1) —
= 05| A
‘I
0 | | | €y
1 2 3 4
Degree d

= = = Truth O Data (n = 5) e d =1

Classical wisdom: pick d < 4 to
avoid overfitting and oscillations

s (| = 2 e— d = 3 —— = 4

\d]
N
W
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Double Descent: The Overparameterized Regime

Polynomial Fits: Under, Interp., Optimal Double Descent Phenomenon
3 ] T T T
— d=9p—1
o 1
E Pelak
H oL |
L 1
2 '
= [
— 1
> < 1 |
o :
~ 1
~ 1
[}
O | [ | | |
1 4 6 10 14
Degree d

—1 —0.5 0 0.5 1 o
Result: Overparameterization

improves generalization via implicit
regularization

— — — Truth OData_dzl_d:4

—d = 10

\}
N
~
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Why Does Double Descent Happen?

d = 3 (Under) d = 4 (Interp) d =10 (Over)
101 E T T E 101 E T T E| 101 E T T E
107 E F |-
1071 S IEURYS 10 1| - llyl/or
—2 L | | | | | | —2 L | | | | | ] —2 L | | | | | |
e
Index r Index r Index r
Underparameterized Threshold Overparameterized
_ _x-1! _
0= (X"X)"XTy 0=X"y 0 =X"(Xx")"ly

At threshold: small o, values amplify noise in poorly-sampled directions
Minimum norm bias in overparameterized regime acts as implicit regularization

Title Intro What is ML? Tasks Theory P 25




) lruthot@emory.edu Comp Math and Al @ ML Overview

Regularization: The Practical Solution

Explicit Regularization Implicit Regularization

Ridge Regression (L2): Gradient Descent:
» Zero initialization

. 2 2
ot 1X6 —yl2 + All6]l> > lterative updates

Solution: > Con\{erges to minimum norm
solution
0= (X"X+)" X"y Overparameterized (P >> N):
» A reduces influence of small & 6=X"(XX")""y

- CeEllisnzel leniglEs o tme o Algorithm chooses simpler solution

Need to understand regularization to understand generalization
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Connection to Computational Mathematics

Ridge Regression = Tikhonov Regularization = Weight Decay
» Familiar tool for ill-posed inverse problems
» Stabilizes inversion of near-singular matrices
» Same mathematical principle in ML and comp math!

Modern Deep Learning:
» Relies on over-parameterization and implicit regularization
» SGD noise acts as regularizer
» Architecture choices matter (inductive bias)
» No explicit A parameter needed (but other hyperparameters)

Forward Connections:
» Lecture 4: Implicit regularization of SGD
» Lecture 5: Advanced optimization methods

Computational mathematics provides tools to understand modern ML

Intro What is ML? Tasks
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Modern Phenomena Beyond Double Descent

Scaling Laws:
» Empirical power law relationships
» Performance vs. model size, dataset size, compute
» Example: GPT scaling laws, Chinchilla scaling
» Test-time compute scaling: More inference compute — better performance

Implicit Regularization:
» Gradient descent finds "good” solutions without explicit penalties
» Zero initialization + GD — minimum norm solution
» SGD noise acts as implicit regularizer

These phenomena reappear throughout the course
» Developing mathematical tools for rigorous understanding

Modern ML challenges classical intuition

Intro What is ML? Tasks
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Course Overview and Summary
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Course Structure: 10 Lectures, 3 Modules

Module 1: Crash Course Module 2: CM — Al Module 3: CM « Al

L1: ML Overview L4: Stochastic Optimization L7: Scientific ML
> Learning tasks » Convergence »> PINNSs, neural operators
> Double descent > Implicit regularization > learned solvers
L2: Learning Problems L5: Loss Landscapes L8: High-Dim PDEs
» MLPs, GNNs, Transformers > Adaptive methods > Curse of dimensionality
> ResNets, Neural ODEs »> Modern optimization > Deep BSDE, FBSDE, HJB
> Loss functions . q
L6: Generative Modeling L9: Inverse Problems
L3: Optimization > PDEs, optimal transport > Simulation based inference
> Empirical vs. expected risk » Diffusion, flow matching » Diffusion priors

L10: Math Discovery
»> Evolutionary coding
> Proof assistants

Intro What is ML? Tasks
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Course Philosophy and Expectations

What this course IS: What this course is NOT:

» lllustrative: Representative examples » Comprehensive: 10 lectures cannot
from different topics cover everything

» Bidirectional: CompMath <+ Al synergy » Pure theory: Balance rigor with intuition

» Hands-on: Numerical experiments and » Software engineering: Concepts over
computational demos production code

» Research-oriented: Active frontiers, > Latest & greatest: Field evolves faster
open problems than curricula

Our approach:
» Pick characteristic issues from each research direction
» Guide you into the field, not exhaustive coverage
» Complement with workshop research talks
» Equip you to read papers and start your own projects

goal: Mathematical foundations + computational tools for CM+Al research

Intro What is ML? Tasks
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Cross-Cutting Themes

Watch for these recurring themes:

» Data Efficiency: Methods for limited, structured datasets
» Manifold learning, sparse recovery, nonlinear approximation

» Uncertainty Quantification: Characterizing prediction confidence
» Bayesian approaches, Monte Carlo, polynomial chaos

» Multi-Scale Simulations: Bridging temporal/spatial scales
» Homogenization, multigrid, closure models

» Physics-Informed Methods: Combining ML with mechanistic models
» PINNs, neural ODEs, differentiable physics

» Curse of Dimensionality: How DNNs succeed in high dimensions
» Compositional structure, low-dimensional manifolds

Intro What is ML? Tasks
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>.: Computational Mathematics and Al Overview

. &
Rigorous Tools € ; o
3> New Capabilities

Questions or

Feedback?
M B E]
Comp i '_-.i'
Math Al .::l.i#_
E . d_..;l.l?_
pear Optimization Approx. Probability 11 d.
Algebra Up PDEs Theory Statistics S# éBin S 02051’[1
Concepts Insights
» ML = approximation theory + data » Overparameterization # overfitting
» Bidirectional exchange: CompMath « Al » Minimum norm = implicit regularization
» Five learning paradigms » Classical intuition needs updating
» Bias-variance vs. double descent » No Free Lunch
» Regularization (explicit & implicit) » Domain knowledge/Al literacy matters

Intro
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