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▶ Lecture 1: Overview of ML paradigms and modern phenomena
▶ Today (Lecture 2): Neural network architectures and loss functions
▶ Forward connection to Lecture 3: Optimization and training
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Reading List: Neural Network Architectures and Losses
Historical Context: Neural networks evolved from finite-depth perceptrons through
convolutional networks to modern transformers and continuous-time architectures.

Key Readings:
1. Goodfellow et al. (2016) – Deep Learning, MIT Press

Comprehensive coverage of architectures and training.

2. Bronstein et al. (2021) – Geometric Deep Learning.
Unifying framework for CNNs, GNNs, Transformers.

3. Vaswani et al. (2017) – Attention Is All You Need.
Transformer architecture and self-attention.

4. He et al. (2016) – Deep Residual Learning.
Skip connections enabling very deep networks.

5. Kidger (2022) – On Neural Differential Equations.
Comprehensive thesis/textbook on neural ODEs/SDEs/CDEs.

Lecture Outline: Universal Approximation→ CNNs/GNNs/Transformers→ ResNets
& Neural ODEs→ Loss Functions
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Today’s Roadmap

Goal: Design the machine learning problem

L(θ) = min
θ

E [ℓ(Fθ(x), y)]

Part 1: Connecting the Dots
▶ Layer connectivity patterns
▶ CNNs, GNNs, Transformers
▶ Structure→ Invariance

Part 2: Going Deep
▶ MLPs→ ResNets→ Neural ODEs
▶ Depth as discretization parameter

Part 3: Loss Functions
▶ MSE (regression)
▶ Cross-entropy (classification)
▶ Examples: Autoencoders, GPT

Focus: Explain common ingredients and use cases
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Layer Design: Connecting the Dots
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From Vectors to Structured Data

Fully-connected baseline: y = σ (Wx + b)

▶ Input x ∈ Rn, output y ∈ Rm

▶ W is dense — every input connects to every output
▶ No assumptions about structure in x

But data often has structure:
▶ Images: grid of pixels with RGB channels
▶ Sequences: ordered tokens (text, time series)
▶ Graphs: nodes + edges (molecules, social networks)

Limitations: fully connected, input/output size fixed
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Architecture design = choosing how to connect features
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CNNs: Block-Sparse & Weight Sharing

xR

xG

xB

Input: 8× 8× 3

3× 3 conv

y1

y2

Output: 8× 8× 2

Convolution as block matrix:[
y1

y2

]
=

[
C(θ11) C(θ12) C(θ13)
C(θ21) C(θ22) C(θ23)

]xR

xG

xB


Each C(θ) is a convolution operator:
▶ Sparse: Each output pixel depends only on local neighborhood
▶ Shared weights: Same θ applied at every spatial location

CNN = block-sparse W, weight sharing, limited field of view
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GNNs: Message Passing on Graphs

GNN layer:

Y = σ (M X W)

▶ X ∈ RN×d: input features (nodal)
▶ M ∈ RN×N: message passing matrix
▶ W ∈ Rd×d′: feature transformation
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Example choices for M: (fixed a-priori, not learned)
▶ Graph Laplacian: M = D−1/2(D− A)D−1/2 (diffusion on graph)
▶ Normalized adjacency: M = D−1A (average over neighbors)

take away: GNN = message passing M × features × MLP
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GNN Advantages and the Missing Graph Problem
Key advantages:
▶ same network works for any graph
▶ W shared across all nodes
▶ Respects graph structure

(permutation equivariant)

Use cases with known graph:
▶ molecules (atoms + bonds)
▶ PDE meshes (nodes + connectivity)
▶ social networks (people +

relationships)
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The missing graph problem:
▶ what if connectivity is unknown?
▶ text: which words relate to which?

Solution: Learn the connectivity — this leads to attention
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Attention: Learning Which Nodes Connect
Step 1: Project features into Query, Key, Value

Q = XWQ, K = XWK, V = XWV

▶ Q (Query): What is node i looking for?
▶ K (Key): What does node j contain?
▶ V (Value): What information does node j send?

1
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4
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6

Step 2: Compute similarity via dot product

score(i, j) =
qi · kj√

dk

▶ High score⇒ node i should attend to node j
▶ Scaling by

√
dk prevents large values

key idea: Similarity = learned function of the data itself
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Attention: Aggregation and the Full Formula

Step 3: Normalize scores to get attention weights

αij =
exp(score(i, j))∑
k exp(score(i, k))

(softmax)

▶ αij = how much node i attends to node j
▶ Weights sum to 1:

∑
j αij = 1
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Matrix form: the attention formula

Attention(Q,K,V) = softmax
(

QKT

√
dk

)
V

Attention = learned adjacency matrix applied to values
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The Transformer Block

Self-attention layer: Attention(Q,K,V) = softmax
(

QKT
√

dk

)
V

This is a GNN layer with data-dependent connectivity (dense, learned)

Full transformer block:
1. Self-attention: Z = Attention(XWQ,XWK,XWV)

2. Residual + LayerNorm: H′ = LayerNorm(X + Z)
3. Feed-forward (per node): H′′ = FFN(H′)

4. Residual + LayerNorm: Y = LayerNorm(H′ + H′′)

Extensions:
▶ Multi-head: multiple attention patterns in parallel
▶ Causal masking: prevent attending to future (autoregressive)

Transformer = GNN with learned (dense) adjacency + FFN
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Σ: Layer Design Summary
Fully-connected layer
▶ no structural assumptions on data
▶ fixed input/output dimensions

CNN (Convolutional Neural Network)
▶ local receptive fields (sparse connectivity)
▶ weight sharing across spatial locations
▶ translation equivariant

GNN (Graph Neural Network)
▶ message passing on arbitrary graphs
▶ same weights for all nodes (permutation equivariant)
▶ works on variable-size inputs

Transformer
▶ learned connectivity via attention
▶ data-dependent weights (dense, adaptive)
▶ permutation equivariant (with positional encoding)

take away: Architecture = connectivity pattern = encoded invariance
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Depth
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From Layers to Networks: Going Deep

h0 h1 h2 h3 h4MLP hℓ+1 = σ(Wℓhℓ + bℓ)

Input Output

ResNet hℓ+1 = hℓ + Fθℓ (hℓ)

skip

Neural ODE dh
dt

= Fθ(h, t)

Neural SDE dh = Fθ(h, t) dt+ g(h, t) dW

t = 0 t = T

add skip connections

continuous limit

add noise

Theory: width suffices vs. Practice: the deeper, the better
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Multilayer Perceptrons: Foundation

h0 h1 h2 h3 h4MLP hℓ+1 = σ(Wℓhℓ + bℓ)

Input Output

Composition structure:

h0 = x, fθ(x) = hL, hℓ = σ(Wℓhℓ−1 + bℓ−1), ℓ = 1, . . . ,L

▶ Depth = number of layers L (discrete, finite)
▶ Each layer: Affine transformation + nonlinearity

Challenge: Vanishing/exploding gradients
▶ Deep MLPs (L > 20) hard to train
▶ Gradient magnitude decays/explodes exponentially with depth
▶ Motivates residual connections
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Universal Approximation: Width Suffices (in Theory)

Theorem (Cybenko (1989), Pinkus (1999))

Let σ be a non-polynomial continuous activation. Single-layer networks

fθ(x) = W2 σ(W1x + b1) + b2, W1 ∈ Rw×n, W2 ∈ R1×w

are dense in C([0, 1]n) (continuous functions on the unit cube).

Interpretation: one hidden layer with enough width w approximates any continuous
function
Why depth matters in practice:
▶ UAT is an existence result — says nothing about efficiency
▶ required width w may grow exponentially with input dimension n
▶ deep networks can be exponentially more efficient Telgarsky 2016
▶ optimization: deep narrow networks often easier to train

Theory: width suffices | Practice: depth wins
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Residual Networks (ResNets): Skip Connections

ResNet hℓ+1 = hℓ + Fθℓ (hℓ)

skip

Innovation: Identity shortcut paths

hℓ+1 = hℓ + Fθℓ
(hℓ)

▶ F: Residual block (typically 2-3 conv layers)
▶ Identity path: hℓ propagates directly
▶ Residual block learns perturbation

Why this matters:
▶ Gradient flow: ∂L

∂hℓ
has additive path through identities

▶ Enables training 100+ layer networks (vs. ∼20 without)
▶ ImageNet breakthrough (He et al., 2015)

Skip connections improve gradient flow in deep networks

impact on loss function
(Li et al. 2018)

56-layer network (no ResNet)

56-layer ResNet
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Continuous-Time Deep Learning
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ResNets: Connection to Discretization
Observation: ResNet update resembles Euler discretization E 2017; Haber and
Ruthotto 2017

hℓ+1 = hℓ + Fθℓ
(hℓ) ←→ xn+1 = xn +∆t Fθn(xn)

▶ Layer index ℓ↔ time step tn

▶ Residual block F ↔ vector field Fθn

▶ Similar structure to ResNet González-Garcı́a et al. 1998

Question: What if we let ∆t→ 0?
▶ Discrete layers→ continuous time
▶ Finite compositions→ differential equation
▶ This motivates Neural ODEs

key insight: ResNet = discretization of continuous transformation
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Neural Ordinary Differential Equations (Neural ODEs)

Neural ODE dh
dt

= Fθ(h, t)

Define fθ(x) = h(T) where h solves the ODE
dh
dt

= Fθ(h(t), t), t ∈ (0,T] h(0) = x

▶ Depth parameter: T (integration time) not L (layer count)
▶ Continuous trajectory h(t) instead of discrete layers

Some advantages:
▶ Can leverage powerful ODE solvers (adaptive time stepping)
▶ Analyze stability, stiffness, long-term behavior, develop dynamics
▶ Derive PDE / control interpretations

Depth becomes a continuous parameter
Title Layer Depth ∞-Deep Loss Σ 21



lruthot@emory.edu Comp Math and AI @ NN Architectures

Neural ODEs: Memory Costs

Claim: Neural ODEs have O(1) memory cost via adjoint equation

d
dt

h
a
g

 =

 Fθ(h, t)
−a⊤ ∂Fθ

∂h (h, t)
a⊤ ∂Fθ

∂θ
(h, t)

 , t ∈ (T, 0],

h(T)
a(T)
g(T)

 =

 y
∇h(T)L

0


Then g(0) = ∇θL (Gradient of loss L w.r.t. parameters)

Reality: Only valid for backward-stable networks!
▶ Adjoint method: Solve backward ODE for gradients
▶ Reversing state equation requires stability - not always guaranteed
▶ Generic networks: Backward ODE often numerically unstable

Checkpointing: Standard approach for generic networks
▶ Store select checkpoints, recompute intermediate values
▶ Common in computational mathematics for large-scale problems
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Optimize-Discretize vs. Discretize-Optimize
min
θ

E [ℓ(fθ(y, t), c)] +
α

2
∥θ∥2

2,

where y is approximately equal to h(T) given by

h′(t) = Fθ(h(t), t), t ∈ (0,T], h(0) = h0.

O→ D: Optimize-Discretize (Neural ODE)
1. keep θ, h continuous in time
2. Euler-Lagrange-Equations⇝ adjoint equation
3. use adaptive time integrators in optimization

D→ O: Discretize-Optimize (ANODE)
1. discretize θ, h in time (could use different grids)
2. differentiate discrete problem⇝ backpropagation
3. keep discretization fixed during optimization

My advice: use D→ O ( accurate gradients, fixed
cost per iter, convergence)

Example (image classification)

more examples in (Gholami et al. 2019;
Onken and Ruthotto 2020)
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Beyond First-Order ODEs: Different ODE Types

d2h
dt2 = Fθ

(
h,

dh
dt

, t,θ
)

→ hn+1 = 2hn − hn−1 + (∆t)2Fθ(hn, tn)

Hyperbolic system:
▶ Wave propagation, conservation laws
▶ Forward backward stable for F = −W⊤σ(Wx + b) (weight tying!)
▶ Reversible

hn−1 = 2hn − hn+1 + (∆t)2Fθ(hn, tn)

Hamiltonian Networks: Split features h = (h1, h2), alternating updates

hn+1
1 = hn

1 +∆t W⊤σ(Whn
2 + b), hn+1

2 = hn
2 −∆t W⊤σ(Whn+1

1 + b)

Advantage: Reversible, volume-preserving, stable

Results: accurate image classification with 1202-layer network Chang et al. 2018

These architectures can be trained safely with O(1) memory!
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A PDE Perspective of Continuous-Time Learning
control 1

control 2
control 3

control 4
control 5

input features
output features←− time −→

Supervised Deep Learning as PDE-Constrained Optimization

Find network parameters θ and classification weights W, µ:

min
θ,W,µ

loss[u(x, 1), y]

s.t. ∂tu + Fθ(x, t)⊤∇u = 0
u(x, 0) = Wx + µ

Classification involves transport PDE, add diffusion for robustness Wang et al. 2018
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Adding Diffusion for Robustness (Wang et al. 2018)

(a) No diffusion (b) Medium diffusion (c) High diffusion
Transport PDE (deterministic):

∂tu + F⊤
θ∇u = 0

▶ Features follow characteristics
▶ Single deterministic prediction

Advection-Diffusion (stochastic):

∂tu + F⊤
θ∇u = σ2

2 ∆u

▶ Features spread/diffuse
▶ Probabilistic predictions

Feynman-Kac Formula: PDE solution↔ SDE expectation

u(x, t) = E [u0(hT)] , dh = Fθ(h, t) dt + σ dW
Key: Noise + averaging→ smoother probabilistic classification
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Neural Stochastic Differential Equations (Neural SDEs)

Neural SDE dh = Fθ(h, t) dt+ g(h, t) dW

t = 0 t = T

dh = Fθ(h, t,θ) dt + g(h, t,θ) dW
▶ f : Deterministic drift (same as Neural ODE)
▶ g: Stochastic diffusion (controls randomness)
▶ dW: Brownian motion (random noise)

Generalizes Neural ODE:
▶ g = 0 is deterministic ODE, g > 0→ stochastic trajectories
▶ Can model uncertainty in dynamics

Applications:
▶ Financial markets (stock price dynamics), physical systems
▶ Stochastic optimal control
▶ Generative modeling (see Lecture 6)
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Σ: Features and Depth

h0 h1 h2 h3 h4MLP hℓ+1 = σ(Wℓhℓ + bℓ)

Input Output

ResNet hℓ+1 = hℓ + Fθℓ (hℓ)

skip

Neural ODE dh
dt

= Fθ(h, t)

Neural SDE dh = Fθ(h, t) dt+ g(h, t) dW

t = 0 t = T

add skip connections

continuous limit

add noise

take away: Continuous formulations offer flexibility and interpretability
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Loss Functions
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Some Common Loss Examples

Regression: Mean Squared Error

LMSE = E
[
∥y− fθ(x)∥2]

Empirical approximation:

L̂MSE =
1
n

n∑
i=1

∥yi − fθ(xi)∥2

Example: Autoencoder

L = E
[
∥x− D(E(x))∥2]

Classification: Cross-Entropy

LCE = −E
[
y⊤ log(p(fθ(x)))

]
where p(f) = softmax(f)

Example: Next-token (GPT)

LGPT = −E [
∑

i log p(xi+1|x1:i)]

Autoregressive generation

In practice: minimize expected loss or empirical loss
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Cross-Entropy as Log-Sum-Exp
Setup: Network outputs logits f = fθ(x) ∈ RK for K classes

Softmax defines class probabilities (e = all-ones vector):

p(f) =
exp(f)

e⊤ exp(f)
∈ RK

Cross-entropy loss for sample (x, y) with one-hot label y ∈ RK:

ℓ(f, y) = −y⊤ log p(f) = −y⊤f + log
(
e⊤ exp(f)

)︸ ︷︷ ︸
LSE(f)

Numerical stability: Subtract m = maxj fj before computing (LSE is shift-invariant)

Hessian (useful for Gauss-Newton, next lecture):

∇2
f ℓ = ∇2LSE(f) = diag(p)− pp⊤ ⪰ 0

Key insight: LSE(f) is convex, −y⊤f is linear⇒ ℓ(f, y) is convex in f = fθ(x)
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Other Loss Functions: Brief Mentions
Generative Adversarial Networks (GANs):
▶ minG maxD Ex[logD(x)] + Ez[log(1− D(G(z)))]
▶ Minimax game: Generator vs. Discriminator

Variational Autoencoders (VAEs):
▶ L = E[∥x− D(E(x))∥2] + KL(q(z|x)∥p(z))
▶ Reconstruction + regularization to prior

Score-Based / Denoising:
▶ L = Et,x

[
∥sθ(xt, t)−∇ log pt(xt)∥2

]
▶ Train score function for generative modeling (Lecture 6)

Physics-Informed Neural Networks (PINNs):
▶ L = λdataE[Ldata] + λphysicsE[LPDE]

▶ Blend data fitting with PDE constraints (Lectures 7-8)

Not an exhaustive list. Loss function choice depends on application.
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Summary

Title Layer Depth ∞-Deep Loss Σ 33



lruthot@emory.edu Comp Math and AI @ NN Architectures

Lecture 2: Setting up the Learning Problem

L(θ) = min
θ

E [ℓ(fθ(x), y)]

Architecture Choices - Building fθ
Part 1: Layer Structure
▶ CNN: sparse + shared W

(translation)
▶ GNN: graph Laplacian L

(permutation)
▶ Transformer: learned Aattn (flexible)

Part 2: Depth/Stacking
▶ MLP: finite layers L
▶ ResNet: hℓ+1 = hℓ + F(hℓ)
▶ Neural ODE: dh/dt = f (h, t)
▶ Neural SDE: add g(h, t)dW

Loss Function Choices
Expected Loss Minimization
▶ MSE: E[∥Y− Fθ(X)∥2]
▶ CE: −E[∑c Yc log pc]

Examples
▶ Autoencoder: reconstruction
▶ GPT: next-token prediction

Other Paradigms
▶ GANs, VAEs, score-based
▶ Physics-informed (PINNs)

design choices in Fθ and L determine what we can learn
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Σ: Neural Networks - Looking Forward

Key Insights from Today
1. Architecture = Encoding Structure

▶ GNN unifies CNNs and Transformers
▶ Structure→ Invariance→ Generalization

2. Depth = Discretization Parameter
▶ ResNet→ Neural ODE→ Neural SDE

3. Expected Loss Minimization
▶ All paradigms: minθ E[L]

slido.com

#CBMS25

Bridge to Lecture 3
Today: Design minθ E[L(Fθ(X))]
Next: How to solve it?
▶ Automatic differentiation: ∇θL
▶ Optimization: SGD, Adam
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Learning: Grids, Groups, Graphs, Geodesics, and Gauges. arXiv: 2104.13478.
Chang, B., L. Meng, E. Haber, L. Ruthotto, D. Begert, and E. Holtham (2018).
“Reversible Architectures for Arbitrarily Deep Residual Neural Networks”. In: AAAI
Conference on Artificial Intelligence, pp. 2811–2818.
Cybenko, G. (1989). “Approximation by Superpositions of a Sigmoidal Function”.
In: Mathematics of Control, Signals and Systems 2.4, pp. 303–314.
E, W. (2017). “A Proposal on Machine Learning via Dynamical Systems”. In:
Communications in Mathematics and Statistics 5.1, pp. 1–11.
Gholami, A., K. Keutzer, and G. Biros (2019). “ANODE: Unconditionally Accurate
Memory-Efficient Gradients for Neural ODEs”. In: International Joint Conference
on Artificial Intelligence (IJCAI).
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