

# Computational Mathematics and AI

## Lecture 2: Neural Network Architectures and Loss Functions

Lars Ruthotto

Departments of Mathematics and Computer Science

[lruthotto@emory.edu](mailto:lruthotto@emory.edu)

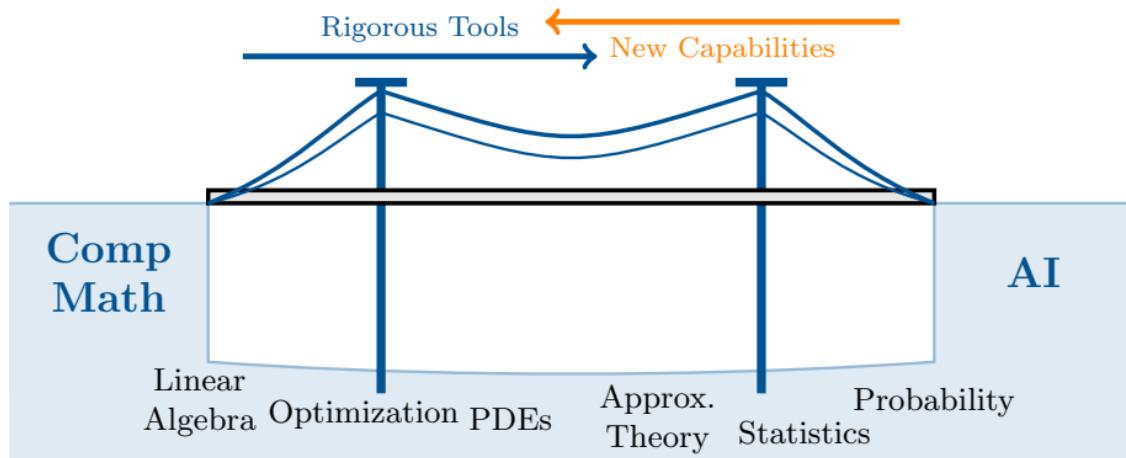
 larsruthotto



slido.com #CBMS25



# Course Framework: The Bidirectional Exchange



slido.com

#CBMS25

- ▶ **Lecture 1:** Overview of ML paradigms and modern phenomena
- ▶ **Today (Lecture 2):** Neural network architectures and loss functions
- ▶ Forward connection to **Lecture 3:** Optimization and training

# Reading List: Neural Network Architectures and Losses

**Historical Context:** Neural networks evolved from finite-depth perceptrons through convolutional networks to modern transformers and continuous-time architectures.

## Key Readings:

1. Goodfellow et al. (2016) – *Deep Learning*, MIT Press  
Comprehensive coverage of architectures and training.
2. Bronstein et al. (2021) – Geometric Deep Learning.  
Unifying framework for CNNs, GNNs, Transformers.
3. Vaswani et al. (2017) – Attention Is All You Need.  
Transformer architecture and self-attention.
4. He et al. (2016) – Deep Residual Learning.  
Skip connections enabling very deep networks.
5. Kidger (2022) – On Neural Differential Equations.  
Comprehensive thesis/textbook on neural ODEs/SDEs/CDEs.

**Lecture Outline:** Universal Approximation → CNNs/GNNs/Transformers → ResNets & Neural ODEs → Loss Functions

# Today's Roadmap

**Goal:** Design the machine learning problem

$$\mathcal{L}(\boldsymbol{\theta}) = \min_{\boldsymbol{\theta}} \mathbb{E} [\ell(F_{\boldsymbol{\theta}}(\mathbf{x}), \mathbf{y})]$$

## Part 1: Connecting the Dots

- ▶ Layer connectivity patterns
- ▶ CNNs, GNNs, Transformers
- ▶ Structure → Invariance

## Part 3: Loss Functions

- ▶ MSE (regression)
- ▶ Cross-entropy (classification)
- ▶ Examples: Autoencoders, GPT

## Part 2: Going Deep

- ▶ MLPs → ResNets → Neural ODEs
- ▶ Depth as discretization parameter

**Focus:** Explain common ingredients and use cases

# Layer Design: Connecting the Dots

# From Vectors to Structured Data

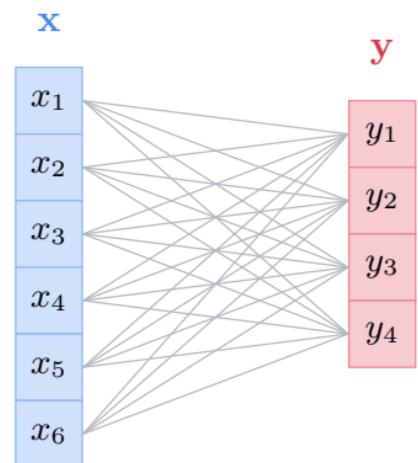
**Fully-connected baseline:**  $\mathbf{y} = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$

- ▶ Input  $\mathbf{x} \in \mathbb{R}^n$ , output  $\mathbf{y} \in \mathbb{R}^m$
- ▶  $\mathbf{W}$  is dense — every input connects to every output
- ▶ No assumptions about structure in  $\mathbf{x}$

**But data often has structure:**

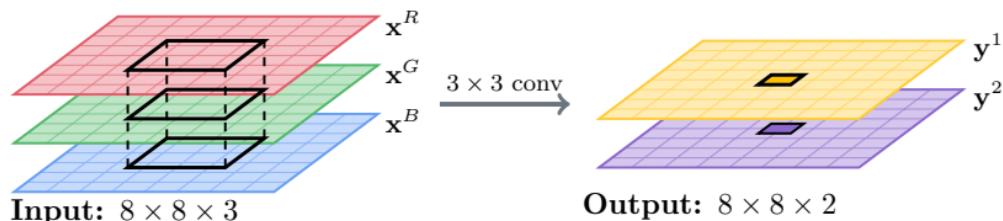
- ▶ Images: grid of pixels with RGB channels
- ▶ Sequences: ordered tokens (text, time series)
- ▶ Graphs: nodes + edges (molecules, social networks)

**Limitations:** fully connected, input/output size fixed



**Architecture design = choosing how to connect features**

# CNNs: Block-Sparse & Weight Sharing



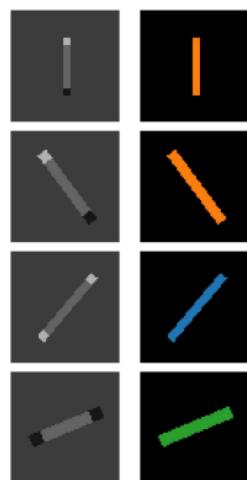
**Convolution as block matrix:**

$$\begin{bmatrix} \mathbf{y}^1 \\ \mathbf{y}^2 \end{bmatrix} = \begin{bmatrix} C(\theta_{11}) & C(\theta_{12}) & C(\theta_{13}) \\ C(\theta_{21}) & C(\theta_{22}) & C(\theta_{23}) \end{bmatrix} \begin{bmatrix} \mathbf{x}^R \\ \mathbf{x}^G \\ \mathbf{x}^B \end{bmatrix}$$

**Each  $C(\theta)$  is a convolution operator:**

- ▶ **Sparse:** Each output pixel depends only on local neighborhood
- ▶ **Shared weights:** Same  $\theta$  applied at every spatial location

**CNN = block-sparse W, weight sharing, limited field of view**

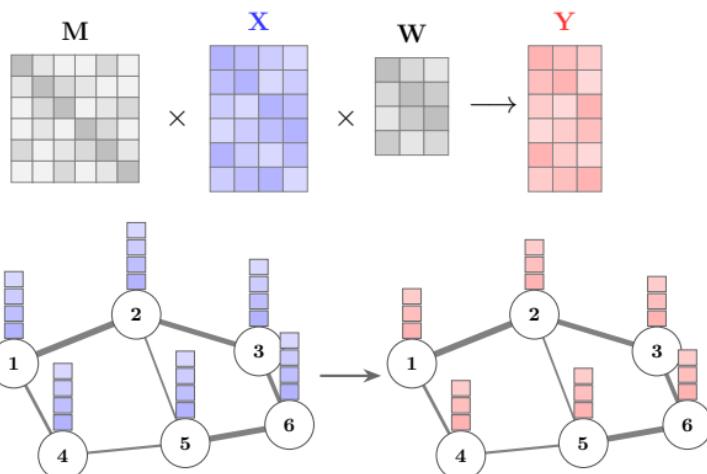


# GNNs: Message Passing on Graphs

## GNN layer:

$$\mathbf{Y} = \sigma(\mathbf{M} \mathbf{X} \mathbf{W})$$

- ▶  $\mathbf{X} \in \mathbb{R}^{N \times d}$ : **input features** (nodal)
- ▶  $\mathbf{M} \in \mathbb{R}^{N \times N}$ : **message passing matrix**
- ▶  $\mathbf{W} \in \mathbb{R}^{d \times d'}$ : **feature transformation**



**Example choices for  $\mathbf{M}$ :** (fixed a-priori, not learned)

- ▶ Graph Laplacian:  $\mathbf{M} = \mathbf{D}^{-1/2}(\mathbf{D} - \mathbf{A})\mathbf{D}^{-1/2}$  (diffusion on graph)
- ▶ Normalized adjacency:  $\mathbf{M} = \mathbf{D}^{-1}\mathbf{A}$  (average over neighbors)

**take away:** GNN = message passing  $\mathbf{M} \times$  features  $\times$  MLP

# GNN Advantages and the Missing Graph Problem

## Key advantages:

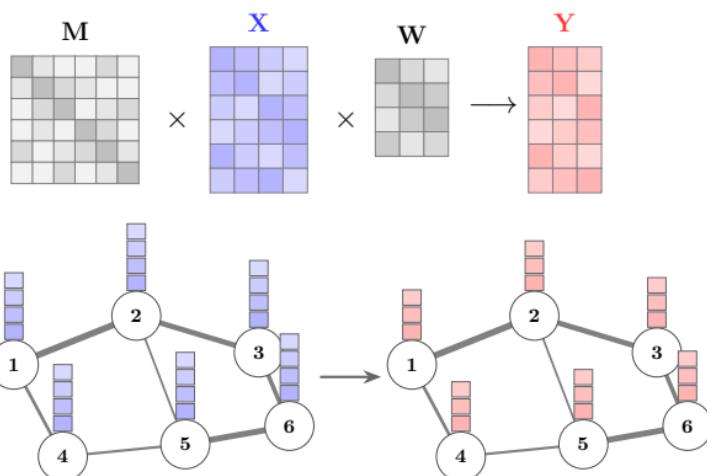
- ▶ same network works for **any graph**
- ▶  $W$  shared across all nodes
- ▶ Respects graph structure (permutation equivariant)

## Use cases with known graph:

- ▶ molecules (atoms + bonds)
- ▶ PDE meshes (nodes + connectivity)
- ▶ social networks (people + relationships)

## The missing graph problem:

- ▶ what if connectivity is **unknown**?
- ▶ text: which words relate to which?



**Solution:** Learn the connectivity — this leads to **attention**

# Attention: Learning Which Nodes Connect

## Step 1: Project features into Query, Key, Value

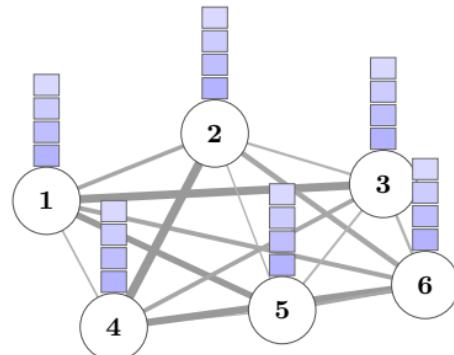
$$\mathbf{Q} = \mathbf{XW}_Q, \quad \mathbf{K} = \mathbf{XW}_K, \quad \mathbf{V} = \mathbf{XW}_V$$

- ▶ **Q** (Query): What is node  $i$  looking for?
- ▶ **K** (Key): What does node  $j$  contain?
- ▶ **V** (Value): What information does node  $j$  send?

## Step 2: Compute similarity via dot product

$$\text{score}(i, j) = \frac{\mathbf{q}_i \cdot \mathbf{k}_j}{\sqrt{d_k}}$$

- ▶ High score  $\Rightarrow$  node  $i$  should attend to node  $j$
- ▶ Scaling by  $\sqrt{d_k}$  prevents large values



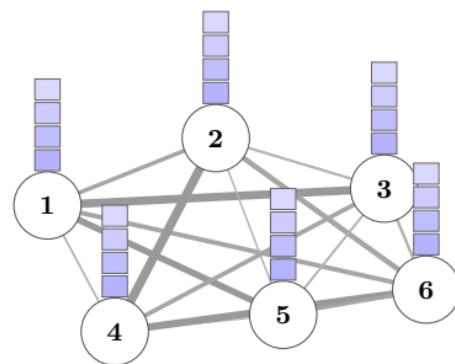
**key idea:** Similarity = learned function of the data itself

# Attention: Aggregation and the Full Formula

## Step 3: Normalize scores to get attention weights

$$\alpha_{ij} = \frac{\exp(\text{score}(i, j))}{\sum_k \exp(\text{score}(i, k))} \quad (\text{softmax})$$

- ▶  $\alpha_{ij}$  = how much node  $i$  attends to node  $j$
- ▶ Weights sum to 1:  $\sum_j \alpha_{ij} = 1$



## Matrix form: the attention formula

$$\text{Attention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \text{softmax} \left( \frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d_k}} \right) \mathbf{V}$$

**Attention = learned adjacency matrix applied to values**

# The Transformer Block

**Self-attention layer:**  $\text{Attention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \text{softmax}\left(\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d_k}}\right)\mathbf{V}$

This is a GNN layer with **data-dependent** connectivity (dense, learned)

## Full transformer block:

1. Self-attention:  $\mathbf{Z} = \text{Attention}(\mathbf{X}\mathbf{W}_Q, \mathbf{X}\mathbf{W}_K, \mathbf{X}\mathbf{W}_V)$
2. Residual + LayerNorm:  $\mathbf{H}' = \text{LayerNorm}(\mathbf{X} + \mathbf{Z})$
3. Feed-forward (per node):  $\mathbf{H}'' = \text{FFN}(\mathbf{H}')$
4. Residual + LayerNorm:  $\mathbf{Y} = \text{LayerNorm}(\mathbf{H}' + \mathbf{H}'')$

## Extensions:

- ▶ **Multi-head:** multiple attention patterns in parallel
- ▶ **Causal masking:** prevent attending to future (autoregressive)

**Transformer = GNN with learned (dense) adjacency + FFN**

# $\Sigma$ : Layer Design Summary

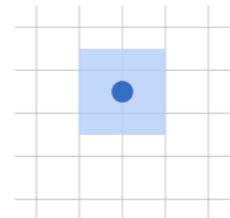
## Fully-connected layer

- ▶ no structural assumptions on data
- ▶ fixed input/output dimensions



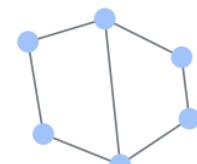
## CNN (Convolutional Neural Network)

- ▶ local receptive fields (sparse connectivity)
- ▶ weight sharing across spatial locations
- ▶ translation equivariant



## GNN (Graph Neural Network)

- ▶ message passing on arbitrary graphs
- ▶ same weights for all nodes (permutation equivariant)
- ▶ works on variable-size inputs



## Transformer

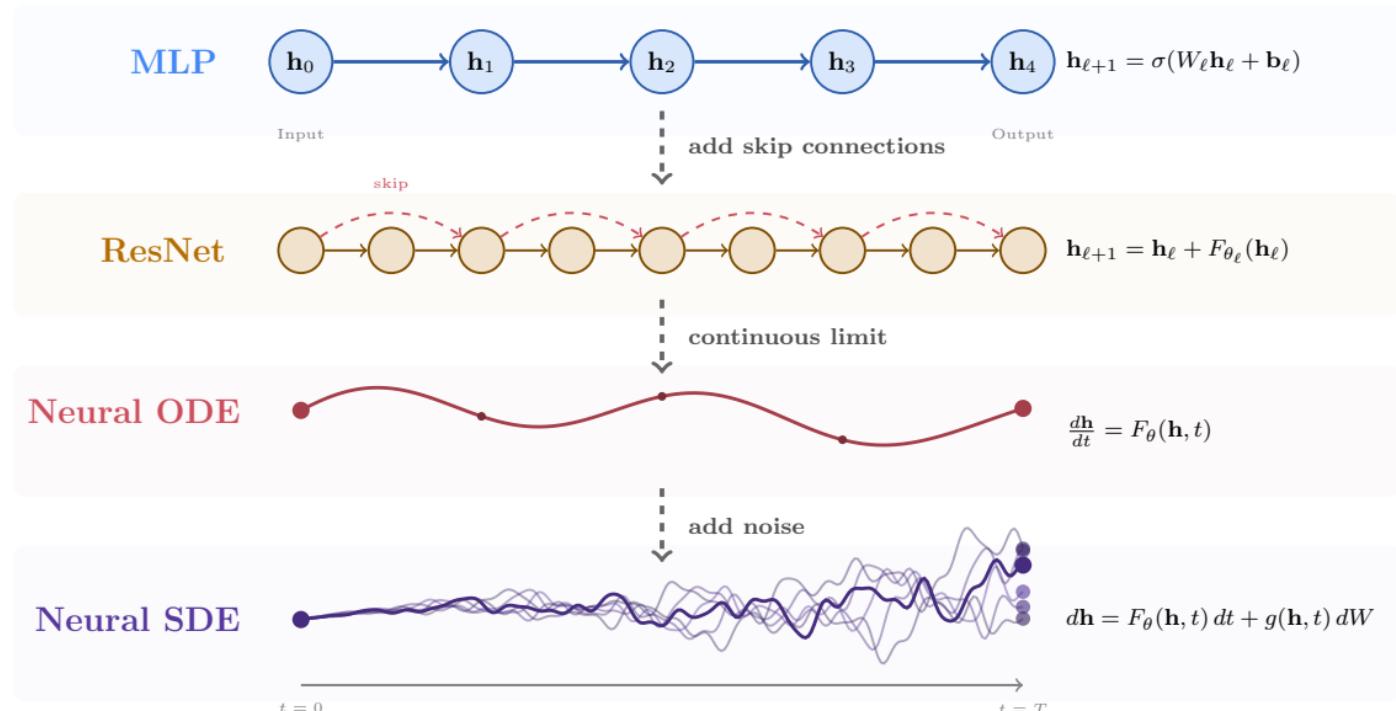
- ▶ learned connectivity via attention
- ▶ data-dependent weights (dense, adaptive)
- ▶ permutation equivariant (with positional encoding)



**take away: Architecture = connectivity pattern = encoded invariance**

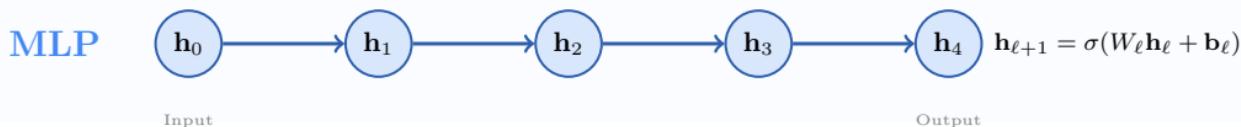
# Depth

# From Layers to Networks: Going Deep



Theory: width suffices vs. Practice: the deeper, the better

## Multilayer Perceptrons: Foundation



## Composition structure:

$$\mathbf{h}_0 = \mathbf{x}, \quad f_\theta(\mathbf{x}) = \mathbf{h}_L, \quad \mathbf{h}_\ell = \sigma(\mathbf{W}_\ell \mathbf{h}_{\ell-1} + \mathbf{b}_{\ell-1}), \quad \ell = 1, \dots, L$$

- ▶ Depth = number of layers  $L$  (discrete, finite)
- ▶ Each layer: Affine transformation + nonlinearity

## Challenge: Vanishing/exploding gradients

- ▶ Deep MLPs ( $L > 20$ ) hard to train
- ▶ Gradient magnitude decays/explodes exponentially with depth
- ▶ Motivates residual connections

# Universal Approximation: Width Suffices (in Theory)

Theorem (Cybenko (1989), Pinkus (1999))

Let  $\sigma$  be a non-polynomial continuous activation. Single-layer networks

$$f_{\theta}(\mathbf{x}) = \mathbf{W}_2 \sigma(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2, \quad \mathbf{W}_1 \in \mathbb{R}^{w \times n}, \mathbf{W}_2 \in \mathbb{R}^{1 \times w}$$

are **dense** in  $C([0, 1]^n)$  (continuous functions on the unit cube).

**Interpretation:** one hidden layer with enough width  $w$  approximates any continuous function

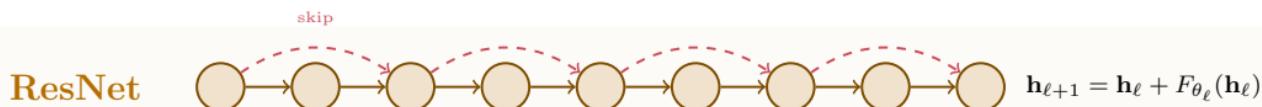
**Why depth matters in practice:**

- ▶ UAT is an **existence result** — says nothing about efficiency
- ▶ required width  $w$  may grow **exponentially** with input dimension  $n$
- ▶ deep networks can be **exponentially more efficient** Telgarsky 2016
- ▶ optimization: deep narrow networks often easier to train

**Theory: width suffices**

**Practice: depth wins**

# Residual Networks (ResNets): Skip Connections



**Innovation:** Identity shortcut paths

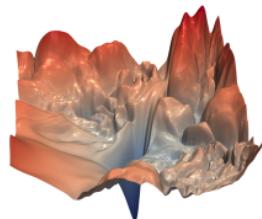
$$h_{\ell+1} = h_{\ell} + F_{\theta_{\ell}}(h_{\ell})$$

- ▶  $F$ : Residual block (typically 2-3 conv layers)
- ▶ Identity path:  $h_{\ell}$  propagates directly
- ▶ Residual block learns perturbation

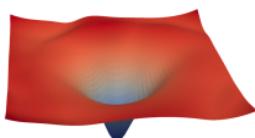
**Why this matters:**

- ▶ Gradient flow:  $\frac{\partial \mathcal{L}}{\partial h_{\ell}}$  has additive path through identities
- ▶ Enables training 100+ layer networks (vs.  $\sim 20$  without)
- ▶ ImageNet breakthrough (He et al., 2015)

impact on loss function  
(Li et al. 2018)



56-layer network (no ResNet)



56-layer ResNet

**Skip connections improve gradient flow in deep networks**

# Continuous-Time Deep Learning

# ResNets: Connection to Discretization

**Observation:** ResNet update resembles Euler discretization E 2017; Haber and Ruthotto 2017

$$\mathbf{h}_{\ell+1} = \mathbf{h}_\ell + F_{\theta_\ell}(\mathbf{h}_\ell) \quad \longleftrightarrow \quad \mathbf{x}_{n+1} = \mathbf{x}_n + \Delta t F_{\theta_n}(\mathbf{x}_n)$$

- ▶ Layer index  $\ell \leftrightarrow$  time step  $t_n$
- ▶ Residual block  $F \leftrightarrow$  vector field  $F_{\theta_n}$
- ▶ Similar structure to ResNet González-García et al. 1998

**Question:** What if we let  $\Delta t \rightarrow 0$ ?

- ▶ Discrete layers  $\rightarrow$  continuous time
- ▶ Finite compositions  $\rightarrow$  differential equation
- ▶ This motivates Neural ODEs

**key insight:** ResNet = discretization of continuous transformation

# Neural Ordinary Differential Equations (Neural ODEs)

Neural ODE



$$\frac{d\mathbf{h}}{dt} = F_{\theta}(\mathbf{h}, t)$$

Define  $f_{\theta}(\mathbf{x}) = \mathbf{h}(T)$  where  $\mathbf{h}$  solves the ODE

$$\frac{d\mathbf{h}}{dt} = F_{\theta}(\mathbf{h}(t), t), \quad t \in (0, T] \quad \mathbf{h}(0) = \mathbf{x}$$

- ▶ Depth parameter:  $T$  (integration time) not  $L$  (layer count)
- ▶ Continuous trajectory  $\mathbf{h}(t)$  instead of discrete layers

## Some advantages:

- ▶ Can leverage powerful ODE solvers (adaptive time stepping)
- ▶ Analyze stability, stiffness, long-term behavior, develop dynamics
- ▶ Derive PDE / control interpretations

**Depth becomes a continuous parameter**

# Neural ODEs: Memory Costs

**Claim:** Neural ODEs have  $O(1)$  memory cost via adjoint equation

$$\frac{d}{dt} \begin{bmatrix} \mathbf{h} \\ \mathbf{a} \\ \mathbf{g} \end{bmatrix} = \begin{bmatrix} F_{\theta}(\mathbf{h}, t) \\ -\mathbf{a}^{\top} \frac{\partial F_{\theta}}{\partial \mathbf{h}}(\mathbf{h}, t) \\ \mathbf{a}^{\top} \frac{\partial F_{\theta}}{\partial \theta}(\mathbf{h}, t) \end{bmatrix}, \quad t \in (T, 0], \quad \begin{bmatrix} \mathbf{h}(T) \\ \mathbf{a}(T) \\ \mathbf{g}(T) \end{bmatrix} = \begin{bmatrix} \mathbf{y} \\ \nabla_{\mathbf{h}(T)} \mathcal{L} \\ 0 \end{bmatrix}$$

Then  $\mathbf{g}(0) = \nabla_{\theta} \mathcal{L}$  (Gradient of loss  $\mathcal{L}$  w.r.t. parameters)

**Reality:** Only valid for backward-stable networks!

- ▶ Adjoint method: Solve backward ODE for gradients
- ▶ **Reversing state equation requires stability** - not always guaranteed
- ▶ Generic networks: Backward ODE often numerically unstable

**Checkpointing:** Standard approach for generic networks

- ▶ Store select checkpoints, recompute intermediate values
- ▶ Common in computational mathematics for large-scale problems

# Optimize-Discretize vs. Discretize-Optimize

$$\min_{\theta} \mathbb{E} [\ell(f_{\theta}(\mathbf{y}, t), c)] + \frac{\alpha}{2} \|\theta\|_2^2,$$

where  $\mathbf{y}$  is approximately equal to  $\mathbf{h}(T)$  given by

$$\mathbf{h}'(t) = F_{\theta}(\mathbf{h}(t), t), \quad t \in (0, T], \quad \mathbf{h}(0) = \mathbf{h}_0.$$

## $O \rightarrow D$ : Optimize-Discretize (Neural ODE)

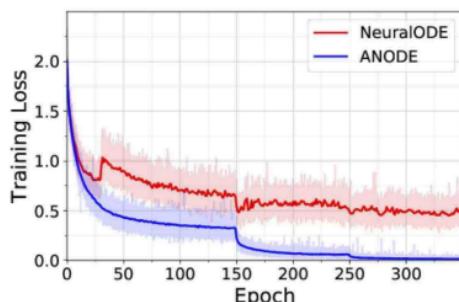
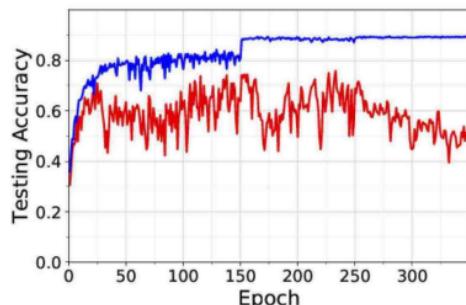
1. keep  $\theta, \mathbf{h}$  continuous in time
2. Euler-Lagrange-Equations  $\rightsquigarrow$  adjoint equation
3. use adaptive time integrators in optimization

## $D \rightarrow O$ : Discretize-Optimize (ANODE)

1. discretize  $\theta, \mathbf{h}$  in time (could use different grids)
2. differentiate discrete problem  $\rightsquigarrow$  backpropagation
3. keep discretization fixed during optimization

**My advice:** use  $D \rightarrow O$  (☀ accurate gradients, ☀ fixed cost per iter, ☀ convergence)

Example (image classification)



more examples in (Gholami et al. 2019; Onken and Ruthotto 2020)

# Beyond First-Order ODEs: Different ODE Types

$$\frac{d^2\mathbf{h}}{dt^2} = F_{\theta} \left( \mathbf{h}, \frac{d\mathbf{h}}{dt}, t, \theta \right) \rightarrow \mathbf{h}_{n+1} = 2\mathbf{h}_n - \mathbf{h}_{n-1} + (\Delta t)^2 F_{\theta}(\mathbf{h}_n, t_n)$$

## Hyperbolic system:

- ▶ Wave propagation, conservation laws
- ▶ Forward backward stable for  $F = -\mathbf{W}^T \sigma(\mathbf{Wx} + \mathbf{b})$  (weight tying!)
- ▶ Reversible

$$\mathbf{h}_{n-1} = 2\mathbf{h}_n - \mathbf{h}_{n+1} + (\Delta t)^2 F_{\theta}(\mathbf{h}_n, t_n)$$

**Hamiltonian Networks:** Split features  $\mathbf{h} = (\mathbf{h}_1, \mathbf{h}_2)$ , alternating updates

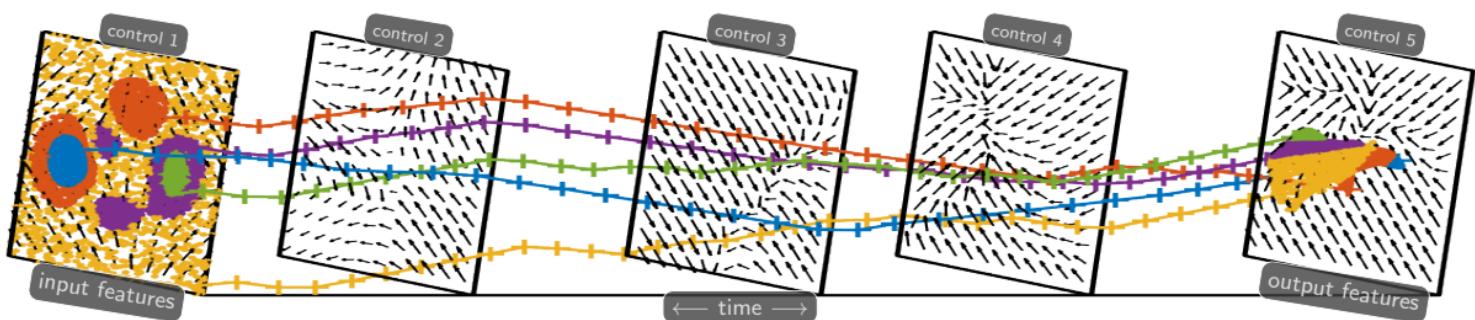
$$\mathbf{h}_1^{n+1} = \mathbf{h}_1^n + \Delta t \mathbf{W}^T \sigma(\mathbf{W}\mathbf{h}_2^n + \mathbf{b}), \quad \mathbf{h}_2^{n+1} = \mathbf{h}_2^n - \Delta t \mathbf{W}^T \sigma(\mathbf{W}\mathbf{h}_1^{n+1} + \mathbf{b})$$

**Advantage:** Reversible, volume-preserving, stable

**Results:** accurate image classification with 1202-layer network Chang et al. 2018

**These architectures can be trained safely with  $O(1)$  memory!**

# A PDE Perspective of Continuous-Time Learning



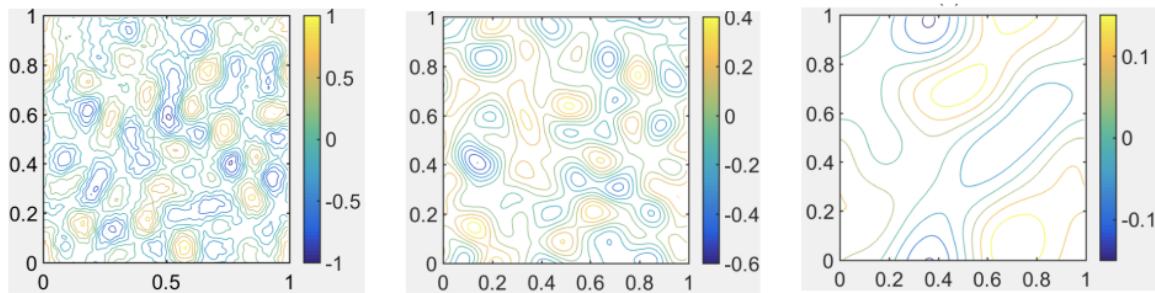
## Supervised Deep Learning as PDE-Constrained Optimization

Find network parameters  $\theta$  and classification weights  $\mathbf{W}, \mu$ :

$$\begin{aligned} & \min_{\theta, \mathbf{W}, \mu} \quad \text{loss}[u(\mathbf{x}, 1), \mathbf{y}] \\ \text{s.t.} \quad & \partial_t u + F_\theta(\mathbf{x}, t)^\top \nabla u = 0 \\ & u(\mathbf{x}, 0) = \mathbf{Wx} + \mu \end{aligned}$$

Classification involves transport PDE, add diffusion for robustness Wang et al. 2018

# Adding Diffusion for Robustness (Wang et al. 2018)



**Transport PDE (deterministic):**

$$\partial_t u + F_\theta^\top \nabla u = 0$$

- ▶ Features follow characteristics
- ▶ Single deterministic prediction

**Advection-Diffusion (stochastic):**

$$\partial_t u + F_\theta^\top \nabla u = \frac{\sigma^2}{2} \Delta u$$

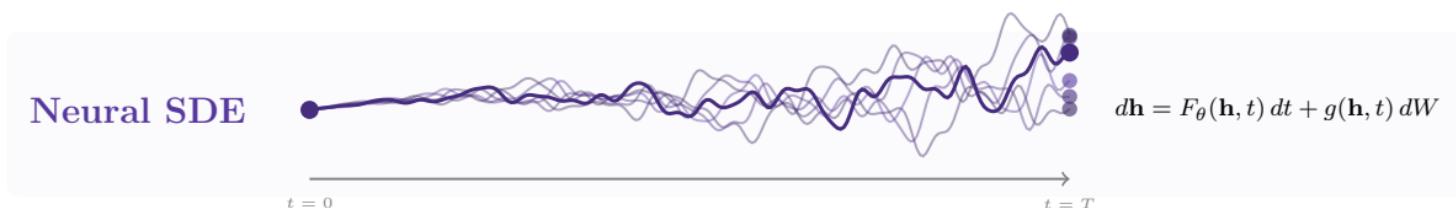
- ▶ Features spread/diffuse
- ▶ **Probabilistic predictions**

**Feynman-Kac Formula:** PDE solution  $\leftrightarrow$  SDE expectation

$$u(\mathbf{x}, t) = \mathbb{E} [u_0(\mathbf{h}_T)], \quad d\mathbf{h} = F_\theta(\mathbf{h}, t) dt + \sigma d\mathbf{W}$$

**Key:** Noise + averaging  $\rightarrow$  smoother probabilistic classification

# Neural Stochastic Differential Equations (Neural SDEs)



$$d\mathbf{h} = F_\theta(\mathbf{h}, t, \theta) dt + g(\mathbf{h}, t, \theta) d\mathbf{W}$$

- ▶  $f$ : Deterministic drift (same as Neural ODE)
- ▶  $g$ : Stochastic diffusion (controls randomness)
- ▶  $d\mathbf{W}$ : Brownian motion (random noise)

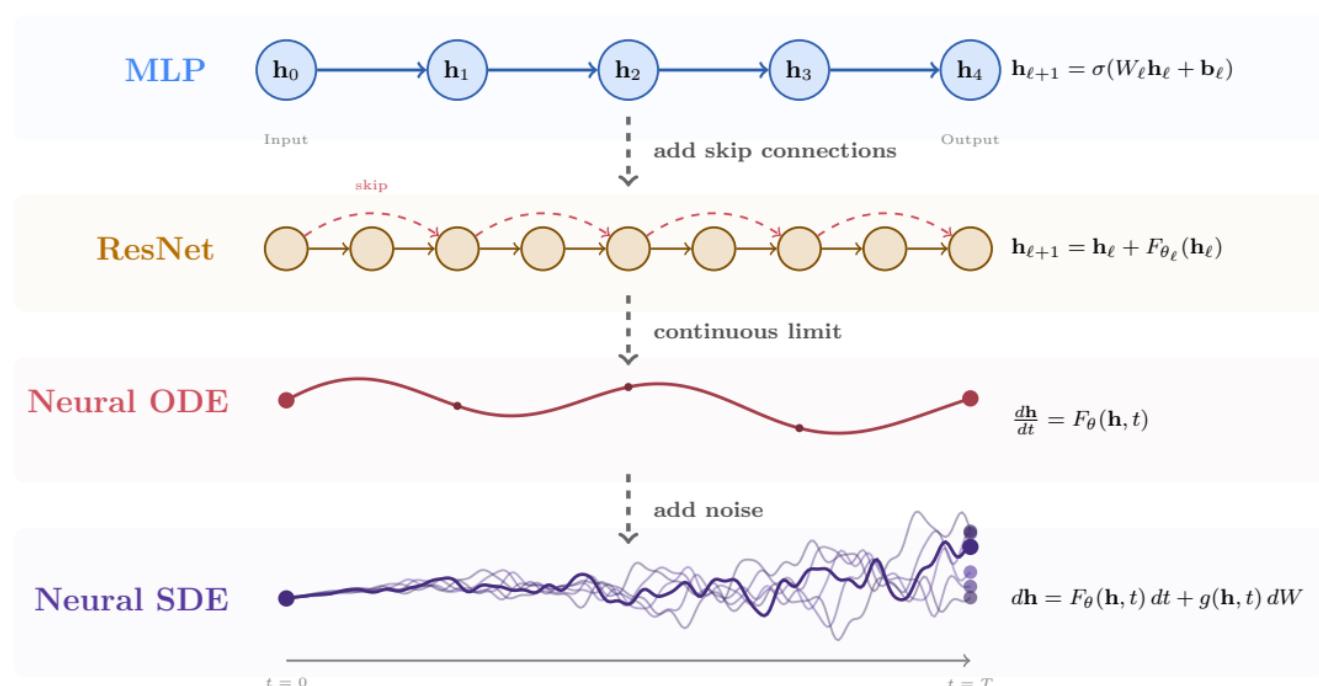
## Generalizes Neural ODE:

- ▶  $g = 0$  is deterministic ODE,  $g > 0 \rightarrow$  stochastic trajectories
- ▶ Can model uncertainty in dynamics

## Applications:

- ▶ Financial markets (stock price dynamics), physical systems
- ▶ Stochastic optimal control
- ▶ Generative modeling (see Lecture 6)

# $\Sigma$ : Features and Depth



**take away:** Continuous formulations offer flexibility and interpretability

# Loss Functions

# Some Common Loss Examples

## Regression: Mean Squared Error

$$\mathcal{L}_{\text{MSE}} = \mathbb{E} [\|\mathbf{y} - f_{\theta}(\mathbf{x})\|^2]$$

### Empirical approximation:

$$\hat{\mathcal{L}}_{\text{MSE}} = \frac{1}{n} \sum_{i=1}^n \|\mathbf{y}_i - f_{\theta}(\mathbf{x}_i)\|^2$$

### Example: Autoencoder

$$\mathcal{L} = \mathbb{E} [\|\mathbf{x} - D(E(\mathbf{x}))\|^2]$$

## Classification: Cross-Entropy

$$\mathcal{L}_{\text{CE}} = -\mathbb{E} [\mathbf{y}^T \log(\mathbf{p}(f_{\theta}(\mathbf{x})))]$$

where  $\mathbf{p}(\mathbf{f}) = \text{softmax}(\mathbf{f})$

### Example: Next-token (GPT)

$$\mathcal{L}_{\text{GPT}} = -\mathbb{E} [\sum_i \log p(x_{i+1} | x_{1:i})]$$

Autoregressive generation

In practice: minimize expected loss or empirical loss

# Cross-Entropy as Log-Sum-Exp

**Setup:** Network outputs logits  $\mathbf{f} = f_\theta(\mathbf{x}) \in \mathbb{R}^K$  for  $K$  classes

**Softmax** defines class probabilities ( $\mathbf{e}$  = all-ones vector):

$$\mathbf{p}(\mathbf{f}) = \frac{\exp(\mathbf{f})}{\mathbf{e}^\top \exp(\mathbf{f})} \in \mathbb{R}^K$$

**Cross-entropy loss** for sample  $(\mathbf{x}, \mathbf{y})$  with one-hot label  $\mathbf{y} \in \mathbb{R}^K$ :

$$\ell(\mathbf{f}, \mathbf{y}) = -\mathbf{y}^\top \log \mathbf{p}(\mathbf{f}) = -\mathbf{y}^\top \mathbf{f} + \underbrace{\log(\mathbf{e}^\top \exp(\mathbf{f}))}_{\text{LSE}(\mathbf{f})}$$

**Numerical stability:** Subtract  $m = \max_j f_j$  before computing (LSE is shift-invariant)

**Hessian** (useful for Gauss-Newton, next lecture):

$$\nabla_{\mathbf{f}}^2 \ell = \nabla^2 \text{LSE}(\mathbf{f}) = \text{diag}(\mathbf{p}) - \mathbf{p} \mathbf{p}^\top \succeq 0$$

**Key insight:**  $\text{LSE}(\mathbf{f})$  is convex,  $-\mathbf{y}^\top \mathbf{f}$  is linear  $\Rightarrow \ell(\mathbf{f}, \mathbf{y})$  is convex in  $\mathbf{f} = f_\theta(\mathbf{x})$

# Other Loss Functions: Brief Mentions

## Generative Adversarial Networks (GANs):

- ▶  $\min_G \max_D \mathbb{E}_{\mathbf{x}}[\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z}}[\log(1 - D(G(\mathbf{z})))]$
- ▶ Minimax game: Generator vs. Discriminator

## Variational Autoencoders (VAEs):

- ▶  $\mathcal{L} = \mathbb{E}[\|\mathbf{x} - D(E(\mathbf{x}))\|^2] + \text{KL}(q(\mathbf{z}|\mathbf{x})\|p(\mathbf{z}))$
- ▶ Reconstruction + regularization to prior

## Score-Based / Denoising:

- ▶  $\mathcal{L} = \mathbb{E}_{t,\mathbf{x}} [\|s_{\theta}(\mathbf{x}_t, t) - \nabla \log p_t(\mathbf{x}_t)\|^2]$
- ▶ Train score function for generative modeling (Lecture 6)

## Physics-Informed Neural Networks (PINNs):

- ▶  $\mathcal{L} = \lambda_{\text{data}} \mathbb{E}[\mathcal{L}_{\text{data}}] + \lambda_{\text{physics}} \mathbb{E}[\mathcal{L}_{\text{PDE}}]$
- ▶ Blend data fitting with PDE constraints (Lectures 7-8)

**Not an exhaustive list. Loss function choice depends on application.**

# Summary

# Lecture 2: Setting up the Learning Problem

$$\mathcal{L}(\theta) = \min_{\theta} \mathbb{E} [\ell(f_{\theta}(\mathbf{x}), \mathbf{y})]$$

## Architecture Choices - Building $f_{\theta}$

### Part 1: Layer Structure

- ▶ **CNN**: sparse + shared  $\mathbf{W}$  (translation)
- ▶ **GNN**: graph Laplacian  $\mathbf{L}$  (permutation)
- ▶ **Transformer**: learned  $\mathbf{A}_{\text{attn}}$  (flexible)

### Part 2: Depth/Stacking

- ▶ **MLP**: finite layers  $L$
- ▶ **ResNet**:  $\mathbf{h}_{\ell+1} = \mathbf{h}_{\ell} + F(\mathbf{h}_{\ell})$
- ▶ **Neural ODE**:  $d\mathbf{h}/dt = f(\mathbf{h}, t)$
- ▶ **Neural SDE**: add  $g(\mathbf{h}, t)d\mathbf{W}$

## Loss Function Choices

### Expected Loss Minimization

- ▶ MSE:  $\mathbb{E}[\|\mathbf{Y} - F_{\theta}(\mathbf{X})\|^2]$
- ▶ CE:  $-\mathbb{E}[\sum_c Y_c \log p_c]$

### Examples

- ▶ Autoencoder: reconstruction
- ▶ GPT: next-token prediction

### Other Paradigms

- ▶ GANs, VAEs, score-based
- ▶ Physics-informed (PINNs)

**design choices in  $F_{\theta}$  and  $\mathcal{L}$  determine what we can learn**

# $\Sigma$ : Neural Networks - Looking Forward

## Key Insights from Today

### 1. Architecture = Encoding Structure

- ▶ GNN unifies CNNs and Transformers
- ▶ Structure  $\rightarrow$  Invariance  $\rightarrow$  Generalization

### 2. Depth = Discretization Parameter

- ▶ ResNet  $\rightarrow$  Neural ODE  $\rightarrow$  Neural SDE

### 3. Expected Loss Minimization

- ▶ All paradigms:  $\min_{\theta} \mathbb{E}[\mathcal{L}]$



slido.com

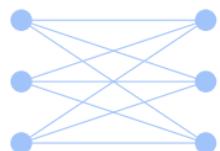
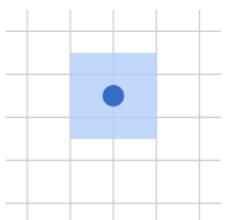
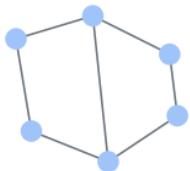
#CBMS25

## Bridge to Lecture 3

**Today:** Design  $\min_{\theta} \mathbb{E}[\mathcal{L}(F_{\theta}(\mathbf{X}))]$

**Next:** How to solve it?

- ▶ Automatic differentiation:  $\nabla_{\theta} \mathcal{L}$
- ▶ Optimization: SGD, Adam



# References I

-  Bronstein, M. M., J. Bruna, T. Cohen, and P. Veličković (2021). *Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges*. arXiv: 2104.13478.
-  Chang, B., L. Meng, E. Haber, L. Ruthotto, D. Begert, and E. Holtham (2018). “Reversible Architectures for Arbitrarily Deep Residual Neural Networks”. In: *AAAI Conference on Artificial Intelligence*, pp. 2811–2818.
-  Cybenko, G. (1989). “Approximation by Superpositions of a Sigmoidal Function”. In: *Mathematics of Control, Signals and Systems* 2.4, pp. 303–314.
-  E, W. (2017). “A Proposal on Machine Learning via Dynamical Systems”. In: *Communications in Mathematics and Statistics* 5.1, pp. 1–11.
-  Gholami, A., K. Keutzer, and G. Biros (2019). “ANODE: Unconditionally Accurate Memory-Efficient Gradients for Neural ODEs”. In: *International Joint Conference on Artificial Intelligence (IJCAI)*.
-  González-García, R., R. Rico-Martínez, and I. G. Kevrekidis (1998). “Identification of Distributed Parameter Systems: A Neural Net Based Approach”. In: *Computers & Chemical Engineering* 22, S965–S968.
-  Goodfellow, I., Y. Bengio, and A. Courville (2016). *Deep Learning*. MIT Press.

# References II

-  Haber, E. and L. Ruthotto (2017). "Stable Architectures for Deep Neural Networks". In: *Inverse Problems* 34.1, p. 014004.
-  He, K., X. Zhang, S. Ren, and J. Sun (2016). "Deep Residual Learning for Image Recognition". In: *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 770–778.
-  Kidger, Patrick (2022). *On Neural Differential Equations*. arXiv: 2202.02435 [cs.LG]. URL: <https://arxiv.org/abs/2202.02435>.
-  Li, H., Z. Xu, G. Taylor, and Tom Goldstein (2018). "Visualizing the Loss Landscape of Neural Nets". In: *Advances in Neural Information Processing Systems*.
-  Onken, D. and L. Ruthotto (2020). "Discretize-Optimize vs. Optimize-Discretize for Time-Series Regression and Continuous Normalizing Flows". In: *arXiv preprint arXiv:2005.13420*.
-  Pinkus, Allan (1999). "Approximation Theory of the MLP Model in Neural Networks". In: *Acta Numerica* 8, pp. 143–195.
-  Telgarsky, Matus (2016). "Benefits of Depth in Neural Networks". In: *Conference on Learning Theory (COLT)*, pp. 1517–1539.

# References III

-  Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin (2017). “Attention Is All You Need”. In: *Advances in Neural Information Processing Systems (NeurIPS)*. Vol. 30.
-  Wang, B., B. Yuan, Z. Shi, and S. J. Osher (2018). *ResNets Ensemble via the Feynman-Kac Formalism to Improve Natural and Robust Accuracies*. arXiv: 1811.10745.