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Course Framework: The Bidirectional Exchange

. L
Rigorous Tools €

3 New Capabilities
[ 4
Comp Al
Math
slido.com
Li . #CBMS25
mear Approx. Probability

Algebra Optimization ppEs Theory Statistics

» Lecture 1: Overview of ML paradigms and modern phenomena
» Today (Lecture 2): Neural network architectures and loss functions
» Forward connection to Lecture 3: Optimization and training
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Reading List: Neural Network Architectures and Losses

Historical Context: Neural networks evolved from finite-depth perceptrons through
convolutional networks to modern transformers and continuous-time architectures.

Key Readings:
1. Goodfellow et al. (2016) — Deep Learning, MIT Press

Comprehensive coverage of architectures and training.

2. Bronstein et al. (2021) — Geometric Deep Learning.
Unifying framework for CNNs, GNNs, Transformers.

3. Vaswani et al. (2017) — Attention Is All You Need.

Transformer architecture and self-attention.

4. He et al. (2016) — Deep Residual Learning.
Skip connections enabling very deep networks.

5. Kidger (2022) — On Neural Differential Equations.
Comprehensive thesis/textbook on neural ODEs/SDEs/CDEs.

Lecture Outline: Universal Approximation — CNNs/GNNs/Transformers — ResNets
& Neural ODEs — Loss Functions
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Today’s Roadmap

Goal: Design the machine learning problem

£(6) = minE[((Fy(x),y)]

Part 1: Connecting the Dots Part 3: Loss Functions
» Layer connectivity patterns » MSE (regression)
» CNNs, GNNs, Transformers » Cross-entropy (classification)
» Structure — Invariance » Examples: Autoencoders, GPT

Part 2: Going Deep
» MLPs — ResNets — Neural ODEs
» Depth as discretization parameter

Focus: Explain common ingredients and use cases

Title



Comp Math and Al @ NN Architectures

Layer Design: Connecting the Dots
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From Vectors to Structured Data

Fully-connected baseline: y = 0 (Wx + b) -
y

» Input x € R", outputy € R” 1
> W is dense — every input connects to every output 2 v
» No assumptions about structure in x Y2

T3
Y3

But data often has structure: T4
» Images: grid of pixels with RGB channels s vt

» Sequences: ordered tokens (text, time series)
» Graphs: nodes + edges (molecules, social networks)

Ze

Limitations: fully connected, input/output size fixed

Architecture design = choosing how to connect features

Title
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’ﬂ lruthot@emory.edu

CNNs: Block-Sparse & Weight Sharing

xT L
i G
= . X" 3 x 3 conv P—2 2
|‘ 1/
— i xB Py

Input: 8 x8 x 3

Convolution as block matrix:

Each C(0) is a convolution operator:
» Sparse: Each output pixel depends only on local neighborhood

» Shared weights: Same 6 applied at every spatial location

CNN = block-sparse W, weight sharing, limited field of view

>

Loss

oco-Deep

Depth

Layer
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GNNSs: Message Passing on Graphs

M X W Y

GNN layer: X X -

Y=0MXW)

» X c RV*: input features (nodal)
> M c R¥*N: message passing matrix
> W c R?*¢: feature transformation

Example choices for M: (fixed a-priori, not learned)
» Graph Laplacian: M = D~'/2(D — A)D~!/2 (diffusion on graph)
» Normalized adjacency: M = D~'A (average over neighbors)

take away: GNN = message passing M x features x MLP
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GNN Advantages and the Missing Graph Problem

Key advantages:
» same network works for any graph M X W Y
» W shared across all nodes

» Respects graph structure % %
(permutation equivariant)

Use cases with known graph:
» molecules (atoms + bonds)
» PDE meshes (nodes + connectivity)

» social networks (people +
relationships)

The missing graph problem:

» what if connectivity is unknown?
» text: which words relate to which?

Solution: Learn the connectivity — this leads to attention

Title
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Attention: Learning Which Nodes Connect

Step 1: Project features into Query, Key, Value

Q — )(WQ7 K - XW[(, V - XWV

» Q (Query): What is node i looking for?
» K (Key): What does node j contain?
» V (Value): What information does node j send?

Step 2: Compute similarity via dot product
q; - k;
Vi

» High score = node i should attend to node j
» Scaling by \/d, prevents large values

score(i,j) =

key idea: Similarity = learned function of the data itself

Title
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Attention: Aggregation and the Full Formula

Step 3: Normalize scores to get attention weights

~__exp(score(i,j))
Y >, exp(score(i, k))

=
(softmax) -
O

» o, = how much node i attends to node j
> Weights sumto 1: > oy = 1

Matrix form: the attention formula

Attention(Q, K, V) = softmax (QKT) \Y
o Vdy

Attention = learned adjacency matrix applied to values

Title Layer Depth oco-Deep Loss > 11
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The Transformer Block

Va
This is a GNN layer with data-dependent connectivity (dense, learned)

Full transformer block:
1. Self-attention: Z = Attention(XWy, XWg, XWy)
2. Residual + LayerNorm: H' = LayerNorm(X + Z)
3. Feed-forward (per node): H” = FFN(H')
4. Residual + LayerNorm: Y = LayerNorm(H' + H”)

Self-attention layer: Attention(Q, K, V) = softmax (Q—KT> \%

Extensions:
» Multi-head: multiple attention patterns in parallel
» Causal masking: prevent attending to future (autoregressive)

Transformer = GNN with learned (dense) adjacency + FFN

Title
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>.: Layer Design Summary

Fully-connected layer

» no structural assumptions on data
> fixed input/output dimensions

CNN (Convolutional Neural Network)
» local receptive fields (sparse connectivity)
» weight sharing across spatial locations
» translation equivariant

GNN (Graph Neural Network) — 1
> message passing on arbitrary graphs \ \
» same weights for all nodes (permutation equivariant) |
» works on variable-size inputs

Transformer
A~ N\

» learned connectivity via attention
» data-dependent weights (dense, adaptive)
> permutation equivariant (with positional encoding)
take away: Architecture = connectivity pattern = encoded invariance

z

Title
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Depth
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From Layers to Networks: Going Deep

. . Output
add skip connections

| ]

:

1

skip v

ResNet hgyy =hy + Fy,(hy)

continuous limit

Neural ODE /\\_/'\/. 4 — Fy(h,t)

add noise

{====

]
]
]
U

v

Neural SDE dh = Fy(h,t)dt + g(h,t) dW

t=0 t="1T

Theory: width suffices vs. Practice: the deeper, the better

Title Depth
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Multilayer Perceptrons: Foundation

MLP ho )@ )@ )@ )@ hyyy = o(Wghy + by)

Input Output

Composition structure:
h():X, f@(X):hL, hg:O'<Wghg,1+bg,1), (= 1,...,L

» Depth = number of layers L (discrete, finite)
» Each layer: Affine transformation + nonlinearity

Challenge: Vanishing/exploding gradients
» Deep MLPs (L > 20) hard to train
» Gradient magnitude decays/explodes exponentially with depth
» Motivates residual connections
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Universal Approximation: Width Suffices (in Theory)
Theorem (Cybenko (1989), Pinkus (1999))

Let o be a non-polynomial continuous activation. Single-layer networks
fg(X) =W, a(Wlx T b]) +b,, W, e wan, W, € R
are dense in C(|0, 1]") (continuous functions on the unit cube).

Interpretation: one hidden layer with enough width w approximates any continuous
function
Why depth matters in practice:

» UAT is an existence result — says nothing about efficiency

» required width w may grow exponentially with input dimension n

» deep networks can be exponentially more efficient Telgarsky 2016
» optimization: deep narrow networks often easier to train

Theory: width suffices | Practice: depth wins

z

Loss

oco-Deep
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Residual Networks (ResNets): Skip Connections

skip

TN TN TN TN
RestNet  FAD AT AD OO A=) o=t

Innovation: Identity shortcut paths

impact on loss function
(Li et al. 2018)

hyy =hy + Fy,(hy)

» F: Residual block (typically 2-3 conv layers)
> |dentity path: h, propagates directly
» Residual block learns perturbation

Why this matters: 56-layer network (no ResNet)
» Gradient flow: g—hi has additive path through identities
» Enables training 100+ layer networks (vs. ~20 without)
» ImageNet breakthrough (He et al., 2015) ‘

Skip connections improve gradient flow in deep networks 56-layer ResNet
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Continuous-Time Deep Learning
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ResNets: Connection to Discretization

Observation: ResNet update resembles Euler discretization E 2017; Haber and
Ruthotto 2017

hg+1 =h,+ Fge (hg) — Xp+1 = X, + Athn(Xn)

» Layer index ¢ <> time step ¢,
» Residual block F <> vector field Fy,
» Similar structure to ResNet Gonzalez-Garcia et al. 1998

Question: What if we let Az — 07?
» Discrete layers — continuous time
» Finite compositions — differential equation
» This motivates Neural ODEs

key insight: ResNet = discretization of continuous transformation
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Neural Ordinary Differential Equations (Neural ODESs)

Neural ODE '/\_/_\/. b — Fy(h,t)

Define fy(x) = h(T) where h solves the ODE
M= Fohir).0). 1€ 0.7) n(0)=x

» Depth parameter: T (integration time) not L (layer count)
» Continuous trajectory h(z) instead of discrete layers

Some advantages:
» Can leverage powerful ODE solvers (adaptive time stepping)
» Analyze stability, stiffness, long-term behavior, develop dynamics
» Derive PDE / control interpretations

Depth becomes a continuous parameter
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’ﬂ lruthot@emory.edu

Neural ODEs: Memory Costs

Claim: Neural ODEs have O(1) memory cost via adjoint equation

d h Fﬂ(h7t) h(T) y
2|2l = |2l mm | e (0] fa(T)| = | VinL
g a’ 22 (h, 1) a(7) 0

Then g(0) = VoL (Gradient of loss £ w.r.t. parameters)

Reality: Only valid for backward-stable networks!
» Adjoint method: Solve backward ODE for gradients
» Reversing state equation requires stability - not always guaranteed

» Generic networks: Backward ODE often numerically unstable

Checkpointing: Standard approach for generic networks
» Store select checkpoints, recompute intermediate values
» Common in computational mathematics for large-scale problems

Depth oco-Deep Loss
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Optimize-Discretize vs. Discretize-Optimize
minE [((fo(y, 1), )] + 5 1615,

Example (image classification)

where y is approximately equal to h(T') given by

4
o

W(t) = Fo(h(z),t), 1€ (0,7], h(0)= h,.

[

Training Loss
=
o

O — D: Optimize-Discretize (Neural ODE)
1. keep 6, h continuous in time
2. Euler-Lagrange-Equations ~~ adjoint equation BN ER SE U 5N
3. use adaptive time integrators in optimization

D — O: Discretize-Optimize (ANODE)
1. discretize 0, h in time (could use different grids)
2. differentiate discrete problem ~~ backpropagation
3. keep discretization fixed during optimization

vl
wn

&
o
o

Testing Accuracy
o o o
= o

o
N

=]
o

o 50 100 150 200 250 300
Epoch

My advice: use D — O (@ accurate gradients, @ fixed , ,
. more examples in (Gholami et al. 2019;
cost per iter, @ convergence) Onken and Ruthotto 2020

z

2

i}

Loss
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Beyond First-Order ODEs: Different ODE Types

2
‘;—; =Fp (h, %,z, 0) —  hyy =2h, —h,_; + (At)*Fg(h,,1,)
Hyperbolic system:

» Wave propagation, conservation laws

» Forward backward stable for F = —~WTo(Wx + b) (weight tying!)

» Reversible
h, | =2h, —h, | + (At)*Fg(h,,1,)

Hamiltonian Networks: Split features h = (hy, h,), alternating updates

hi™ = h} + AtW'o(Whj +b), hit' =h} — AtW'o(Whit! +b)
Advantage: Reversible, volume-preserving, stable
Results: accurate image classification with 1202-layer network Chang et al. 2018

These architectures can be trained safely with O(1) memory!

Title Depth
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A PDE Perspective of Continuous-Time Learning

Supervised Deep Learning as PDE-Constrained Optimization

Find network parameters 6 and classification weights W, p:

P
st. Ou+Fe(x,)'Vu=0

u(x,0) = Wx+ p

Classification involves transport PDE, add diffusion for robustness Wang et al. 2018

>

Title
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Adding Diffusion for Robustness (Wang et al. 2018)

1 1 Uy O > 1 [ kg/
08| 05 081 C 9 R floz o8 : 0.1
060 06l o 2 i le 0.6
) 0 ‘ 0
0.4} 041\Q) O 0.2 vs
0.2}~ { g C2 0.2 o 04 02 o 0.1
0 SIS (O elEi] ¥ olo : e 06 0 )
0 0.5 1 0 02 04 06 08 1 0 02 04 06 08 1
(a) No diffusion (b) Medium diffusion  (c) High diffusion
Transport PDE (deterministic): Advection-Diffusion (stochastic):
Ou+FyVu=0 8tu—|—F;,rVu:"72Au
» Features follow characteristics » Features spread/diffuse
» Single deterministic prediction » Probabilistic predictions

Feynman-Kac Formula: PDE solution +» SDE expectation

u(x,t) = E[up(hy)], dh=Fe(ht)dt+ ocdW
Key: Noise + averaging — smoother probabilistic classification

Depth

Title
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Neural Stochastic Differential Equations (Neural SDES)

Neural SDE dh = Fy(h,t)dt + g(h,t) dW

dh = Fg(h,1,0)dt + g(h,t,0) dW
» f: Deterministic drift (same as Neural ODE)

» ¢: Stochastic diffusion (controls randomness)
» dW: Brownian motion (random noise)

Generalizes Neural ODE:
» ¢ = 0is deterministic ODE, g > 0 — stochastic trajectories
» Can model uncertainty in dynamics

Applications:
» Financial markets (stock price dynamics), physical systems
» Stochastic optimal control
» Generative modeling (see Lecture 6)

Depth

Title
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>.: Features and Depth

N

add skip connections

MLP @ ‘@ )/112\ )/11-3\ )@ hyi1 = o(Wehe + by)
Input

Output

===

skip

continuous limit

Neural ODE ‘/\—/\/. 92 — Fy(h,t)

add noise

{====

[]
]
]
U

v

Neural SDE dh = Fy(h, t)dt + g(h, t) dW

take away: Continuous formulations offer flexibility and interpretability

Title Depth
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Loss Functions
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Some Common Loss Examples

Regression: Mean Squared Error Classification: Cross-Entropy
Luse = E [[ly = fo(x)|I’] Lce = —E [y log(p(fa(x)))]
Empirical approximation: where p(f) = softmax(f)

A 1 Example: Next-token (GPT)
2
Lyse = . E lyi — fo(x:)
i=1 Lepr = —E >~ log p(xit1]x1:)]

ressiv neration
Example: Autoencoder Autoregressive generatio

L =E [|}x — D(E(x))|’]

In practice: minimize expected loss or empirical loss

Title



%) lruthot@emory.edu Comp Math and Al @ NN Architectures

Cross-Entropy as Log-Sum-Exp

Setup: Network outputs logits f = fp(x) € RX for K classes
Softmax defines class probabilities (e = all-ones vector):

exp(f) K
fl=——"_€cR
(®) e exp(f) <
Cross-entropy loss for sample (x,y) with one-hot label y € RX:
((f,y) =~y  logp(f) = —y'f +log (e exp(f))
—_————
LSE(f)

Numerical stability: Subtract m = max;f; before computing (LSE is shift-invariant)
Hessian (useful for Gauss-Newton, next lecture):

Vil = V’LSE(f) = diag(p) —pp' =0

Key insight: LSE(f) is convex, —y'fis linear = ¢(f,y) is convex in f = f5(x)

Title
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Other Loss Functions: Brief Mentions

Generative Adversarial Networks (GANSs):

» ming maxp E¢[log D(x)] + E,[log(1 — D(G(z)))]

» Minimax game: Generator vs. Discriminator
Variational Autoencoders (VAES):

> L =E[x — D(E(x))[*] + KL(q(z[x)[|p(z))

» Reconstruction + regularization to prior
Score-Based / Denoising:

> L=E [HS@(X,, t) — Vlogpt(xt)ﬂz]

» Train score function for generative modeling (Lecture 6)
Physics-Informed Neural Networks (PINNs):

> L= )\dataE[ﬁdata] + AphysicsE[ﬁPDE]

» Blend data fitting with PDE constraints (Lectures 7-8)

Not an exhaustive list. Loss function choice depends on application.

Title
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Summary
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Lecture 2: Setting up the Learning Problem

£(6) = minE[(fo(x), )]

Architecture Choices - Building fy Loss Function Choices
Part 1: Layer Structure Expected Loss Minimization
» CNN: sparse + shared W » MSE: E[|Y — Fo(X)|*]
(translation) » CE: —E[)__ Y.logp]
» GNN: graph Laplacian L Examples
(permutation)

» Autoencoder: reconstruction
» GPT: next-token prediction

Other Paradigms

> MLP: finite layers L » GANSs, VAEs, score-based

> ResNet: h,,, =h,+ F(hg) » Phvsics-inf PINN
> Neural ODE: dh/dr = f(h, 1) ysics-informed (PINNSs)

» Neural SDE: add g(h,7)dW

» Transformer: learned Ay, (flexible)
Part 2: Depth/Stacking

design choices in Fy and £ determine what we can learn

Title Depth
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>.: Neural Networks - Looking Forward

Key Insights from Today
1. Architecture = Encoding Structure

» GNN unifies CNNs and Transformers
» Structure — Invariance — Generalization

2. Depth = Discretization Parameter

» ResNet — Neural ODE — Neural SDE ¢
3. Expected Loss Minimization
» All paradigms: ming E[£]
. RN
E Bridge to Lecture 3 \ '
,_...'" % Today: Design ming E[L(Fy(X))] P
Eikan:  Next: How to solve it? ™~
y » Automatic differentiation: VoL
#CBMS25 » Optimization: SGD, Adam A~

Title
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