@ 1ruthot@emory .edu Comp Math and Al @ Optimization

Computational Mathematics and Al

Lecture 3: Optimization for Machine Learning

Lars Ruthotto

Departments of Mathematics and Computer Science

lruthotto@emory.edu

larsruthotto i
m &%

Xm)l

Title SA vs SAA Gradients GN SGD Exp b References

https://linkedin.com/in/larsruthotto

5 1lruthot@emory.edu Comp Math and Al @ Optimization

Reading List

Historical Context: Stochastic optimization starts in 50s, backpropagation enabled
ML in the 80s, acceleration/ implicit regularization are focus today.

Key Readings:
1. Robbins and Monro (1951) — Stochastic Approximation. Ann. Math. Stat.

Foundational convergence theory for SGD.

2. Rumelhart, Hinton, and Williams (1986) — Back-Propagating Errors. Nature

Classic paper that enabled neural network training.

3. Nocedal and Wright (2006) — Numerical Optimization, Springer.

Classical optimization theory and second-order methods.

4. Bottou, Curtis, and Nocedal (2018) — Optimization Methods for Large-Scale ML.
SIAM Review

Comprehensive survey of SA vs SAA framework.

5. Baydin et al. (2018) — Automatic Differentiation in ML: A Survey. JMLR

Forward/reverse mode AD for backpropagation.

Lecture Outline: SA vs SAA — Backprop & AD — Gauss Newton — SGD Basics

Title SA vs SAA Gradients GN SGD Exp b References 2

® lruthot@emory.edu Comp Math and Al @ Optimization

Roadmap: Optimization for Machine Learning

Question: How to train neural networks with millions to billions of parameters?

Four foundational pillars:
1. SA vs SAA: Two paradigms for stochastic optimization
Robbins-Monro (1951) vs Vapnik (1998)

2. Efficient gradients: The enabling technology
Backpropagation makes O(p) gradient computation possible

3. Gauss Newton methods: Appeal and computational challenges
O(p?) memory, O(p?) computation, and SAA/SA tension

4. SGD as prototype SA algorithm: Simple, scalable, surprisingly effective
Convergence theory + sampling perspective: noise as feature, not bug

Title SA vs SAA Gradients GN SGD Exp = References 3

£J lruthot@emory.edu Comp Math and Al @ Optimization

Running Example: Peaks Classification (Data + Model)

Dataset: Two-Layer MLP Architecture:

oo S, S e oy h© =x e R?
f0%a 050 h() — RelLU (Wu)h(m + bu)) W g gI2X2

W(z)h(l) 4 b(z)7 W(Z) c R5><32
p = softmax(y) € R

2 o oo\ A
o of S0 ey P | wu y
N

o o
o W Z
obo [-
5 &

a D ¢ = o
°© %‘.:Eoo"gogau,_,&Omm 500 8
=} . i

e R s o o, T oo Cross-entropy loss:

9, £ ;E 2L O #_ o o o
R A X N SO, ((Fo(x),y) = —y' Fo(x) + log (eT exp (Fe(X)))

. _ 1 1 2 2
» 2D Peaks function Parameters: 6 = (W(), b(), W) b))

> 5 classes (level sets) p=(2x32+432)+ (32 x5+5) =261

» 1000 i.i.d samples Goal: Find ¢* € R?! minimizing £(0)
U([-3,3%)

Title SA vs SAA Gradients GN SGD Exp = References 4

Comp Math and Al @ Optimization

Stochastic Approximation vs Sample
Average Approximation

Title SA vs SAA Gradients GN SGD Exp b References

5 1lruthot@emory.edu Comp Math and Al @ Optimization

Two Ways to Minimize Expected Loss

Sample Average Approximation (SAA) Stochastic Approximation (SA)
Vapnik & Chervonenkis, 1998 Robbins & Monro, 1951
Setup: Fix dataset and min empirical loss Setup: Minimize expected loss

N . '
0* = arg min % ZK(Fg(xi), Yi) 0" = arg;mnE(W) [L(Fa(x),y)]
9 i=1

Algorithm: Any deterministic optimization Algorithm: Stochastic gradient descent

method:
01 =0, — 1 Vo[l(Fp(x),y)]
Or1 = 0; — H™'VoLy(6;) Ny
fori.i.d. samples (x,y).

Theory: Converges if gradient is unbiased,

Theory: Rich statistical learning theory (VC learning rate suitable
dimension, generalization bounds) .
Advantage: Well-understood methods, no Advantage: simple, scalable, good for

_ streaming/online data, generalization
hyperparameters, parallel computation

Title SA vs SAA Gradients GN SGD Exp = References 6

5 1lruthot@emory.edu Comp Math and Al @ Optimization

Mini-Batch SGD: The Practical Hybrid

Modern practice: combine benefits of both formulations

b
Or41 =6 — ?7% 121 Vol (Fp(xi),yi)
where {(x1,¥1),.-., (Xp,y5)} are i.i.d. samples from dataset
Interpretation ambiguity:
» SA view: improved gradient estimates using » samples (variance reduction)

» SAA view: stochastic approximation to batch gradient descent

Key terminology:
» Batch size b: number of samples per gradient computation
» Epoch: complete pass through training dataset (SAA concept)
> lteration: single parameter update step
» Learning rate 7: step size controlling update magnitude

mini-batch SGD balances variance reduction with computational efficiency

Title SA vs SAA Gradients GN SGD Exp b References 7

Comp Math and Al @ Optimization

Computing Gradients: The Enabling
Technology

Title SA vs SAA Gradients GN SGD Exp b References

£J lruthot@emory.edu Comp Math and Al @ Optimization

The Gradient Computation Challenge

Requirement: all optimization algorithms need VL(0)

» network with p parameters = gradient VL(0) € R?
» modern networks: p ~ 10° to 10'! parameters

» Example: BERT-base has 110M parameters

Why not finite differences? Naive approach dL/90; ~ [L(0 + he;) — L(0)]/h requires p forward
passes — prohibitive for p ~ 10!
The solution: Backpropagation

» computes exact gradient in O(p) operations

» same asymptotic cost as single forward pass

» exploits network structure via chain rule

» enables training of deep networks

efficient gradient computation via backpropagation enables deep learning

Title SA vs SAA Gradients GN SGD Exp b References 9

89 1lruthot@emory.ed Comp Math and Al @ Optimization

Backpropagation: The Chain Rule in Action
Idea: compute gradient in backward pass using chain rule
Computational graph: network is simple DAG *

» nodes: variables (inputs, activations, outputs, loss)

£(,y)
@
» edges: operations (linear transforms, nonlinearities) ,

Two-pass algorithm:

1. Forward pass: compute and store activations '

a® —x 70 — wOLED) — 5,0

2. Backward pass: propagate gradients (reverse order)

oL (0a\" oL
9al® | 9al® dalt+1)

cost O(p) — same order as forward pass

Title SA vs SAA Gradients GN SGD Exp = RECICYES 10

89 1lruthot@emory.ed Comp Math and Al @ Optimization

Modern AD Frameworks: PyTorch, JAX, TensorFlow

» automatic graph construction (dynamic or static)
» PyTorch: dynamic computation graphs
> TensorFlow: static graphs with eager execution
» JAX: functional transformations
» built-in reverse-mode AD
» PyTorch: .backward (), torch.autograd.grad()
» JAX: grad(), value_and_grad()
» TensorFlow: GradientTape
» handle complex control flow
» conditionals, loops, recursion
» dynamic architectures
> optimizations
» operator fusion for efficiency
» memory management and checkpointing
> graph compilation (XLA, TorchScript)

modern AD frameworks make backpropagation automatic and efficient

Title SA vs SAA Gradients GN SGD Exp b References 11

9] lruthot@emory.edu

Comp Math and Al @ Optimization

Computing Gradients with JAX: Value and Grad

Automatic Differentiation in Action

import jax
import jax.numpy as jnp

Define loss function

def loss_fn(params, X, y):
"""Compute softmax cross—entropy loss."""
pred = model (params, X)
return softmax_cross_entropy (pred, y)

Get both loss value and gradient

loss_value, grad = jax.value_and_grad(loss_fn) (
params, X_batch, y_batch

)

Update parameters (vanilla SGD)
params_new = params - learning_rate x grad

Key Features:
» Jax.grad returns gradient function
» jax.value_and_grad returns both
» Complexity: O(p) time, same as forward pass!
» Works via reverse-mode AD (backprop)

Title SA vs SAA Gradients GN SGD Exp = References

Mathematical View
Given L: R? — R:
oL
00,
VL) = | :
oL
6,
Computational Cost:
» Forward pass: O(p)
» Backward pass: O(p)
» Total: O(p)

Enabling technology for deep
learning!

59 1lruthot@emory Comp Math and Al @ Optimization

Gauss-Newton Methods

vs SAA Gradients GN

5 1lruthot@emory.edu Comp Math and Al @ Optimization

Gauss-Newton Derivation for General Convex Loss
Starting point: Per-sample loss ¢(Fy(x),y)

Step 1: Linearize network output around 6:

Fp(x) = Fy(x) + J(60) (x)(0 — bb)

where J(6y)(x) = aFge(X) ‘90

Step 2: Quadratic Taylor expansion of total loss: Substitute linearization into
L(0) =), L(Fg(x;),yi) and expand to second order.

€ R™*? is the Jacobian

V2£ ~ ZJITH,J,

where H; = V%E(&, y,-)|y:F90(Xi) is the Hessian of per-sample loss w.r.t. predictions
Different losses have different H structure
» Least-squares: H = I = J'J (classical GN)
> Softmax cross-entropy: H; = diag(p;) — p;p, for logits p;
Gauss-Newton naturally emerges from linearization + quadratic approximation

Title SA vs SAA Gradients GN SGD Exp = References 14

5 1lruthot@emory.edu Comp Math and Al @ Optimization

Computing the Jacobian: Small Output Dimension

Key observation: For classification with m classes, output Fy(x) € R™ is small!

Jacobian via reverse-mode AD (backpropagation):
> J = 9% ¢ Rm*P requires m backward passes
» CIFAR-10: 10 classes = 10 backprops per sample

» Memory: can use less storage if computed batchwise and hidden features are large

JAX implementation: parallelize across samples

J = vmap (jacrev (F_fn)) (X) givesJ, e R™?fori=1,...,n
Gauss-Newton as dense linear algebra:

G= ZJ,THiJi e RP*P solve (G + \I)d = —VL

i=1
For small networks: GN = Jacobian stacking + dense solve

Title SA vs SAA Gradients GN SGD Exp b References 15

5 1lruthot@emory.edu Comp Math and Al @ Optimization

The Appeal of Gauss-Newton Methods

041 =0, — G~ 'VL, where G = ZJ,-THiJi
i=1

Theoretical advantages:
» fast convergence — when fitting training data (low residual)

curvature adaptation — automatically adjusts step size based on local geometry

>

» affine invariance — robust to parameter scaling
» best-case: single step for quadratic problems
>

no hyperparameters — well-understood linesearch and trust region methods

Practical advantages:
» Parallelism — Jacobian computations can be done in large batches

question: if so good theoretically, why limited use in deep learning?

Title SA vs SAA Gradients GN SGD Exp b References 16

) lruthot@emory.edu

Comp Math and Al @ Optimization

Small Network: Gauss-Newton Performs Well

Predicted decision boundary:
3

o QZDQ)M&;% Uﬂ@)@;oo(ggu%%w @
6%] DD(%) é}%zp%o & &L %U%F

o0 o (g;n%

N
L

=

0 Do@OOq:DOo o E’Ooo(c%
Ul Boe 33
%@aﬁio S 330, i oo dl
-14° g#ggg;':g_%%v@? &0 ¢
bo ® ' el % 508
JUOO@@%DQ@@ PR O)
%) a8 “Oo%%mgo @O (@gg -3 <

— [y O (=) (E |

2 Y ogg %omgogo(?g,% ga S
Gae D @R 700, st

A YO IO
342 ’ e M Um &g OpODOTH O

-3 -2 -1 0 1 2 3

Final accuracy:
Train: 93.87% — Test: 91.50%

Title SA vs SAA Gradients GN

SGD Exp 3

Convergence dynamics:

References

1.0

o
©

Accuracy
I
S

©
[N

o
<)

10°4

Loss

o
o

—e— Train
—=— Test
0 10 15 20 25 30
Iteration
—e— Train
—=— Test
0 10 15 20 25 30
Iteration

5 1lruthot@emory.edu Comp Math and Al @ Optimization

Computational Limitations: Memory and Storage Options
1. Storage choices for curvature information:

» Full Hessian: O(p?) memory

» Storage: p?> elements (25Mx25M = 625 trillion) for ResNet-50
» Our example: small network p = 261 = feasible (68KB)

» Jacobian: O(n x m) memory (per-sample outputs x parameters)
» For classification: typically m < p, but n can be large
> Need low-rank, quantization, or other compression techniques
2. Computational cost: building the Hessian
» Per-sample Jacobian computation: O(m) operations each (via AD)
» Hessian construction: O(n x m?) to form J'HJ

3. Matrix-free approach and its limitations:
» Preconditioning challenge: Without Hessian matrix, preconditioner hard to construct
» Typical CG cost: each iteration ~ 2 SGD epochs of stochastic gradient computation
» Result: Competition with SGD is lost in wall-clock time!

Title SA vs SAA Gradients GN SGD Exp b References 18

’ﬂ lruthot@emory.edu Comp Math and Al @ Optimization

Statistical and Geometric Limitations

4. Stochastic optimization challenges:
» accurate Hessian estimation requires large batches
» tension: SAA (b > 1 for accurate curvature) vs SA (b small)
» small-batch Hessian too noisy for reliable updates
» implicit regularization benefits of SGD noise lost with large batches

5. Non-convexity in neural networks:
» Hessian may be indefinite (negative eigenvalues)
» Newton direction may not be descent direction
» requires modifications: trust regions, line search, damping
» further increases computational overhead

Path forward:
» structured approximations exploiting network architecture
» Lecture 5: modern approaches (K-FAC Martens and Grosse 2015, Shampoo)
with tractable curvature

structured approximations enable practical adaptive methods

Title SA vs SAA Gradients GN SGD Exp = References 19

Comp Math and Al @ Optimization

SGD: Convergence and Basic Properties

Title SA vs SAA Gradients GN SGD Exp

’ﬂ lruthot@emory.edu

Comp Math and Al @ Optimization

SGD Convergence in a Nutshell

mein L) = rngin Exy [((Fo(x),y)]

SGD Update: 0,1 = 6, — n,Vol(Fy,(x,),y:), Where (x,,y,) ~ P i.i.d.
Requirement 1 - Unbiasedness:

E[Vol(Fy(x),y)] = VL)

Requirement 2 - Robbins-Monro Conditions:
> =00 (reachoptimum)) "’ <oo (control noise)
=1 =1

Classical Convergence Results (assume o2 = E[||Vy/ — VL||!] < o0):
> If problem is convex: E[L(6,) — L(6%)] < & + Cro™n,
> (C; depends on: initial distance/suboptimality, smoothness and gradient bound of loss
» Optimization error O(1/+/t) + noise-induced error O(a>n,)
» Robbins-Monro: n, — 0 makes noise term vanish
> If problem is non-convex: min,<, E[|VL(6,)|]?] < & + %

Title SA vs SAA Gradients GN SGD Exp b References 21

5 1lruthot@emory.edu Comp Math and Al @ Optimization

Mini Batches as Noise Reduction
Central Limit Theorem: For large batch size b,

l% z}: Vol(Fo(x)),y;) ~ N (Vﬁ(a)’ %E(QO

where (x;,y,) are i.i.d. samples and X(0) = Cov|[Vl(Fy(x),y)].
Why X/b? For i.i.d. samples g; = Vyl(Fy(x;),y;):

[Zg,] szCOVg] blb-Z:

SN’

Key implications:
» Gradient noise variance « 1/b
» Noise structure determined by X(0)
» To halve noise, need 4 x larger batches

Consequence: We can think about SGD as Monte Carlo optimization

Title SA vs SAA Gradients GN SGD Exp b References 22

5 1lruthot@emory.edu Comp Math and Al @ Optimization

Beyond the Gaussian Approximation
The CLT approximation is convenient, but has limitations:

Empirical observation (Simsekli, Sagun, and Gurbuzbalaban 2019):
» Gradient noise in deep learning often exhibits heavy tails
» Better characterized by «a-stable (SaS) distributions
» Tail decay: p(x) ~ |x|~U*+*) where a € (0, 2]
» Gaussian is the special case « = 2

Why this matters:
» Heavy tails = occasional large jumps in parameter space
» Large jumps help escape sharp minima (not captured by Gaussian model)
» Different optimizers interact differently with heavy-tailed noise

Forward reference:
> Lecture 5 develops this theory to explain Adam vs SGD generalization
» Adam dampens heavy-tailed noise = different implicit bias

Reminder: A good learning algorithm converges, but a great one learns!!

Title SA vs SAA Gradients GN SGD Exp b References 23

59 1lruthote du Comp Math and Al @ Optimizatio

SGD in Action

Title A vs SAA Gradients GN GD Exp b References 24

$J lruthot@emor y.edu

Comp Math and Al @ Optimization

Small Network (width=32): Vanilla SGD

Convergence dynamics:

Decision boundary:

3 — = 5 1.0/
LT < Saghdy
® o @hHm 7P e " 0.8
2 EBO % & O%fﬁ) S \‘\ ‘. & ‘ !
\V9§<P .Dog‘h 05\ %@DO‘G‘ o
8_© S e ® o g ® 0.61
P :: .%!!) gj % ‘j@@U‘D & S
1o i S ® ?'? T e o] 804
[¢) 5 W ~
o IS o o]
RPN DR D 0 — ain
O'EDDO v ® o o Ooooﬁ\é@%) —=— Test
%D&‘JO é)o,ro %O%@@O%A e 0.0 - i i :
s g 50 85 6 S 5 g @ Pog 0 2000 4000 6000
1. Q;ﬁz;gg $ 2 Egczg%? N o, 8 Iteration
® @ @ O > SQE—Q
Ib:b = YDUOO%;;?@&? o @) a —e— Train
-2 = 990 O 8T & %
Oc@ %DODO o © 8 & %C& —=— Test
k- Ezk) et g0 Oao ik 10°
32 > o8 e OEDO‘?DHE‘QC "
-3 -2 -1 0 1 2 : §
6x1071
Final accuracy:
. -1
Train: 79.75% — Test: 81.50% 4xao
2000 4000 6000
Iteration

Title SA vs SAA Gradients GN SGD Exp b

References

) lruthot@emory.edu Comp Math and Al @ Optimization

Large Network (width=8,192): The Regime Shift

Decision boundary: Convergence dynamics:
3 : - ; < |
6%330 OQDOQE%GE)Q)F muﬂ‘&)@jogr@q}&) %;Z O%%C 1.0
8o BBE Voo OO ood?i?’i%p@@ 5 0.8
2 OE%S 9% § O%i)gg 8 %(gj%fﬂoggﬁ >
bé’&épﬁ“ou;@ W g o2l g @ 0.6
Oo c W g kY I o a S
b ol
00 0T HO TUP O 0, E%Q% £ 041
o O&g@ Yo o dBH0 -
N o &% IbgcTe B 8% < g 0.2 —e— Train
0 oc o © <o 9 B O g8 Oo b
%, ¢ o %3 ® OOO%%@> —=— Test
@@Dz‘gho S e & 500 Py MO 0.01— : : : : ,
. D= 700 8%@ oo o o 8%630@ §Oé 0 20000 40000 60000 80000 100000
b 2 080 @aa o @)%8 8 Iteration
O&Oo@ﬁ\ &DQ@@ P \@8@5
o O oo, 40 Gl Do 8% ° 5 —
—210 o °%o B B 85 Toat
I oo 0¥ “Ho~do o oe¥s) 104 —=— Tes

._.
Ny
Loss

Final accuracy: 107
Train: 98.87% — Test: 92.00%

0 20000 40000 60000 80000 100000
Iteration

Title SA vs SAA Gradients GN SGD Exp b References 26

5 1lruthot@emory.edu Comp Math and Al @ Optimization

>2: Optimization for Machine Learning

1. SA vs SAA formulations
» Robbins-Monro (1951): optimize expectations via stochastic gradients
» Vapnik (1998): optimize empirical risk on fixed datasets

2. Backpropagation as enabling technology
» Reverse-mode AD: exact gradient in O(p) time (same as forward pass)
» Memory-storage tradeoff: forward stores activations OR recompute on backward

3. Gauss-Newton in small regime
» Linearize network, Hessian emerges naturally: V2L ~ J'HJ
» Small networks: GN dominates; Large networks: O(p*) memory barrier

4. SGD in over-parameterized regime
» Small networks: hyperparameter tuning essential (Optuna helps)
» Large networks: SGD natural fit, ~92% test accuracy with benign overfitting
» Modern practice: overparameterization makes optimization easier, not harder

Title SA vs SAA Gradients GN SGD Exp b References 27

’ﬂ lruthot@emory.edu

>

Title

Outlook

Open questions from this lecture:

» Why does SGD work so well in over-parameterized networks?
» Why does noise help optimization and generalization?

Where we’re headed:

> Lecture 4: SGD Deep Dive

» Implicit regularization mechanisms (early stopping, noise, flat minima)
» Continuous-time perspective: gradient flow and Langevin dynamics

» Edge of stability phenomenon in over-parameterized regime

» Why over-parameterization makes optimization easier

» Lecture 5: Modern Optimizers and Structured Methods

» Adaptive first-order: momentum, Adam, RMSprop and beyond
» Modern structured second-order: K-FAC Martens and Grosse 2015, Shampoo

SA vs SAA Gradients GN SGD Exp b References

Comp Math and Al @ Optimization

%) lruthot@emory.edu Comp Math and Al @ Optimization

References |

Title

E

Baydin, A. G., B. A. Pearlmutter, A. A. Radul, and J. M. Siskind (2018). “Automatic
Differentiation in Machine Learning: A Survey”. In: Journal of Machine Learning
Research 18.153, pp. 1-43.

Bottou, L., F. E. Curtis, and J. Nocedal (2018). “Optimization Methods for
Large-Scale Machine Learning”. In: SIAM Review 60.2, pp. 223-311.

[4 Martens, J. and R. Grosse (2015). “Optimizing Neural Networks with

)) &Y

SA vs SAA

Kronecker-Factored Approximate Curvature”. In: International Conference on
Machine Learning (ICML), pp. 2408-2417.

Nocedal, J. and S. J. Wright (2006). Numerical Optimization. 2nd. Springer.
Robbins, H. and S. Monro (1951). “A Stochastic Approximation Method”. In: The
Annals of Mathematical Statistics 22.3, pp. 400—-407.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986). “Learning
Representations by Back-Propagating Errors”. In: Nature 323.6088, pp. 533-536.
Simsekli, U., L. Sagun, and M. Gurbuzbalaban (2019). “A Tail-Index Analysis of
Stochastic Gradient Noise in Deep Neural Networks”. In: International Conference
on Machine Learning (ICML). PMLR, pp. 5827-5837.

GN SGD

Gradients Exp b References 29

	Title
	Stochastic Approximation vs Sample Average Approximation
	Computing Gradients: The Enabling Technology
	Gauss-Newton Methods
	SGD: Convergence and Basic Properties
	SGD in Action
	Summary
	References

