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Reading List
Historical Context: Stochastic optimization starts in 50s, backpropagation enabled
ML in the 80s, acceleration/ implicit regularization are focus today.

Key Readings:
1. Robbins and Monro (1951) – Stochastic Approximation. Ann. Math. Stat.

Foundational convergence theory for SGD.

2. Rumelhart, Hinton, and Williams (1986) – Back-Propagating Errors. Nature
Classic paper that enabled neural network training.

3. Nocedal and Wright (2006) – Numerical Optimization, Springer.
Classical optimization theory and second-order methods.

4. Bottou, Curtis, and Nocedal (2018) – Optimization Methods for Large-Scale ML.
SIAM Review
Comprehensive survey of SA vs SAA framework.

5. Baydin et al. (2018) – Automatic Differentiation in ML: A Survey. JMLR
Forward/reverse mode AD for backpropagation.

Lecture Outline: SA vs SAA → Backprop & AD → Gauss Newton → SGD Basics
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Roadmap: Optimization for Machine Learning
Question: How to train neural networks with millions to billions of parameters?

Four foundational pillars:

1. SA vs SAA: Two paradigms for stochastic optimization

Robbins-Monro (1951) vs Vapnik (1998)

2. Efficient gradients: The enabling technology

Backpropagation makes O(p) gradient computation possible

3. Gauss Newton methods: Appeal and computational challenges

O(p2) memory, O(p3) computation, and SAA/SA tension

4. SGD as prototype SA algorithm: Simple, scalable, surprisingly effective

Convergence theory + sampling perspective: noise as feature, not bug
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Running Example: Peaks Classification (Data + Model)
Dataset:
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True Decision Boundaries

▶ 2D Peaks function

▶ 5 classes (level sets)

▶ 1000 i.i.d samples
U([−3, 3]2)

Two-Layer MLP Architecture:

h(0) = x ∈ R2

h(1) = ReLU
(

W(1)h(0) + b(1)
)
, W(1) ∈ R32×2

ŷ = W(2)h(1) + b(2), W(2) ∈ R5×32

p̂ = softmax(ŷ) ∈ R5

Cross-entropy loss:

ℓ(Fθ(x), y) = −y⊤Fθ(x) + log
(

e⊤ exp (Fθ(x))
)

Parameters: θ = (W(1), b(1),W(2), b(2))

p = (2 × 32 + 32) + (32 × 5 + 5) = 261

Goal: Find θ∗ ∈ R261 minimizing L(θ)
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Stochastic Approximation vs Sample
Average Approximation

Title SA vs SAA Gradients GN SGD Exp Σ References 5



lruthot@emory.edu Comp Math and AI @ Optimization

Two Ways to Minimize Expected Loss
Sample Average Approximation (SAA)
Vapnik & Chervonenkis, 1998

Setup: Fix dataset and min empirical loss

θ∗ = argmin
θ

1
N

N∑
i=1

ℓ(Fθ(xi), yi)

Algorithm: Any deterministic optimization
method:

θt+1 = θt − ηH−1∇θLN(θt)

Theory: Rich statistical learning theory (VC
dimension, generalization bounds)
Advantage: Well-understood methods, no

hyperparameters, parallel computation

Stochastic Approximation (SA)
Robbins & Monro, 1951

Setup: Minimize expected loss

θ∗ = argmin
θ

E(x,y)[ℓ(Fθ(x), y)]

Algorithm: Stochastic gradient descent

θt+1 = θt − ηt∇θ[ℓ(Fθ(x), y)]

for i.i.d. samples (x, y).

Theory: Converges if gradient is unbiased,
learning rate suitable

Advantage: simple, scalable, good for
streaming/online data, generalization

Title SA vs SAA Gradients GN SGD Exp Σ References 6



lruthot@emory.edu Comp Math and AI @ Optimization

Mini-Batch SGD: The Practical Hybrid
Modern practice: combine benefits of both formulations

θt+1 = θt − ηt
1
b

b∑
i=1

∇θℓ(Fθ(xi), yi)

where {(x1, y1), . . . , (xb, yb)} are i.i.d. samples from dataset

Interpretation ambiguity:
▶ SA view: improved gradient estimates using b samples (variance reduction)
▶ SAA view: stochastic approximation to batch gradient descent

Key terminology:
▶ Batch size b: number of samples per gradient computation
▶ Epoch: complete pass through training dataset (SAA concept)
▶ Iteration: single parameter update step
▶ Learning rate η: step size controlling update magnitude

mini-batch SGD balances variance reduction with computational efficiency
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Computing Gradients: The Enabling
Technology
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The Gradient Computation Challenge
Requirement: all optimization algorithms need ∇L(θ)

▶ network with p parameters ⇒ gradient ∇L(θ) ∈ Rp

▶ modern networks: p ∼ 106 to 1011 parameters

▶ Example: BERT-base has 110M parameters

Why not finite differences? Naive approach ∂L/∂θi ≈ [L(θ+ hei)− L(θ)]/h requires p forward
passes – prohibitive for p ∼ 1011!

The solution: Backpropagation

▶ computes exact gradient in O(p) operations

▶ same asymptotic cost as single forward pass

▶ exploits network structure via chain rule

▶ enables training of deep networks

efficient gradient computation via backpropagation enables deep learning
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Backpropagation: The Chain Rule in Action
Idea: compute gradient in backward pass using chain rule

Computational graph: network is simple DAG

▶ nodes: variables (inputs, activations, outputs, loss)

▶ edges: operations (linear transforms, nonlinearities)

Two-pass algorithm:
1. Forward pass: compute and store activations

a(0) = x, z(ℓ) = W(ℓ)a(ℓ−1), a(ℓ) = σ(z(ℓ))

2. Backward pass: propagate gradients (reverse order)

∂L
∂a(ℓ)

=

(
∂a(ℓ+1)

∂a(ℓ)

)T
∂L

∂a(ℓ+1)

cost O(p) – same order as forward pass
x

W(1)·

z(1)

σ(·)

a(1)

W(2)·

z

ℓ(·,y)

L
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Modern AD Frameworks: PyTorch, JAX, TensorFlow
▶ automatic graph construction (dynamic or static)

▶ PyTorch: dynamic computation graphs
▶ TensorFlow: static graphs with eager execution
▶ JAX: functional transformations

▶ built-in reverse-mode AD
▶ PyTorch: .backward(), torch.autograd.grad()
▶ JAX: grad(), value and grad()
▶ TensorFlow: GradientTape

▶ handle complex control flow
▶ conditionals, loops, recursion
▶ dynamic architectures

▶ optimizations
▶ operator fusion for efficiency
▶ memory management and checkpointing
▶ graph compilation (XLA, TorchScript)

modern AD frameworks make backpropagation automatic and efficient
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Computing Gradients with JAX: Value and Grad

Automatic Differentiation in Action
import jax
import jax.numpy as jnp

# Define loss function
def loss_fn(params, X, y):

"""Compute softmax cross-entropy loss."""
pred = model(params, X)
return softmax_cross_entropy(pred, y)

# Get both loss value and gradient
loss_value, grad = jax.value_and_grad(loss_fn)(

params, X_batch, y_batch
)

# Update parameters (vanilla SGD)
params_new = params - learning_rate * grad

Key Features:
▶ jax.grad returns gradient function
▶ jax.value and grad returns both
▶ Complexity: O(p) time, same as forward pass!
▶ Works via reverse-mode AD (backprop)

Mathematical View
Given L : Rp → R:

∇L(θ) =


∂L
∂θ1...
∂L
∂θp


Computational Cost:
▶ Forward pass: O(p)
▶ Backward pass: O(p)
▶ Total: O(p)

Enabling technology for deep
learning!
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Gauss-Newton Methods
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Gauss-Newton Derivation for General Convex Loss
Starting point: Per-sample loss ℓ(Fθ(x), y)

Step 1: Linearize network output around θ0:

Fθ(x) ≈ Fθ0(x) + J(θ0)(x)(θ − θ0)

where J(θ0)(x) = ∂Fθ(x)
∂θ

∣∣
θ0

∈ Rm×p is the Jacobian

Step 2: Quadratic Taylor expansion of total loss: Substitute linearization into
L(θ) =

∑
i ℓ(Fθ(xi), yi) and expand to second order.

∇2L ≈
∑

i

JT
i HiJi

where Hi = ∇2
ŷℓ(ŷ, yi)|ŷ=Fθ0 (xi) is the Hessian of per-sample loss w.r.t. predictions

Different losses have different H structure

▶ Least-squares: H = I ⇒ JTJ (classical GN)

▶ Softmax cross-entropy: Hi = diag(pi)− pip⊤
i for logits pi

Gauss-Newton naturally emerges from linearization + quadratic approximation
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Computing the Jacobian: Small Output Dimension
Key observation: For classification with m classes, output Fθ(x) ∈ Rm is small!

Jacobian via reverse-mode AD (backpropagation):

▶ J = ∂Fθ
∂θ ∈ Rm×p requires m backward passes

▶ CIFAR-10: 10 classes ⇒ 10 backprops per sample

▶ Memory: can use less storage if computed batchwise and hidden features are large

JAX implementation: parallelize across samples

J = vmap(jacrev(F fn))(X) gives Ji ∈ Rm×p for i = 1, . . . , n

Gauss-Newton as dense linear algebra:

G =

n∑
i=1

J⊤i HiJi ∈ Rp×p, solve (G + λI)δ = −∇L

For small networks: GN = Jacobian stacking + dense solve
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The Appeal of Gauss-Newton Methods

θt+1 = θt − G−1∇Lt where G =

n∑
i=1

J⊤i HiJi

Theoretical advantages:

▶ fast convergence – when fitting training data (low residual)

▶ curvature adaptation – automatically adjusts step size based on local geometry

▶ affine invariance – robust to parameter scaling

▶ best-case: single step for quadratic problems

▶ no hyperparameters – well-understood linesearch and trust region methods

Practical advantages:

▶ Parallelism – Jacobian computations can be done in large batches

question: if so good theoretically, why limited use in deep learning?
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Small Network: Gauss-Newton Performs Well
Predicted decision boundary:

Final accuracy:

Train: 93.87% — Test: 91.50%

Convergence dynamics:
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Computational Limitations: Memory and Storage Options
1. Storage choices for curvature information:

▶ Full Hessian: O(p2) memory
▶ Storage: p2 elements (25M×25M = 625 trillion) for ResNet-50
▶ Our example: small network p = 261 ⇒ feasible (68KB)

▶ Jacobian: O(n × m) memory (per-sample outputs × parameters)
▶ For classification: typically m ≪ p, but n can be large
▶ Need low-rank, quantization, or other compression techniques

2. Computational cost: building the Hessian

▶ Per-sample Jacobian computation: O(m) operations each (via AD)
▶ Hessian construction: O(n × m2) to form JTHJ

3. Matrix-free approach and its limitations:

▶ Preconditioning challenge: Without Hessian matrix, preconditioner hard to construct
▶ Typical CG cost: each iteration ≈ 2 SGD epochs of stochastic gradient computation
▶ Result: Competition with SGD is lost in wall-clock time!
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Statistical and Geometric Limitations
4. Stochastic optimization challenges:
▶ accurate Hessian estimation requires large batches
▶ tension: SAA (b ≫ 1 for accurate curvature) vs SA (b small)
▶ small-batch Hessian too noisy for reliable updates
▶ implicit regularization benefits of SGD noise lost with large batches

5. Non-convexity in neural networks:
▶ Hessian may be indefinite (negative eigenvalues)
▶ Newton direction may not be descent direction
▶ requires modifications: trust regions, line search, damping
▶ further increases computational overhead

Path forward:
▶ structured approximations exploiting network architecture
▶ Lecture 5: modern approaches (K-FAC Martens and Grosse 2015, Shampoo)

with tractable curvature

structured approximations enable practical adaptive methods
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SGD: Convergence and Basic Properties
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SGD Convergence in a Nutshell

min
θ

L(θ) = min
θ

E(x,y)[ℓ(Fθ(x), y)]

SGD Update: θt+1 = θt − ηt∇θℓ(Fθt(xt), yt), where (xt, yt) ∼ P i.i.d.
Requirement 1 - Unbiasedness:

E[∇θℓ(Fθ(x), y)] = ∇L(θ)

Requirement 2 - Robbins-Monro Conditions:
∞∑

t=1

ηt = ∞ (reach optimum)
∞∑

t=1

η2
t < ∞ (control noise)

Classical Convergence Results (assume σ2 = E[∥∇θℓ−∇L∥2] < ∞):
▶ If problem is convex: E[L(θt)− L(θ∗)] ≤ C1√

t + C2σ
2ηt

▶ C1 depends on: initial distance/suboptimality, smoothness and gradient bound of loss
▶ Optimization error O(1/

√
t) + noise-induced error O(σ2ηt)

▶ Robbins-Monro: ηt → 0 makes noise term vanish
▶ If problem is non-convex: mins≤t E[∥∇L(θs)∥2] ≤ C√

t +
σ2

t
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Mini Batches as Noise Reduction
Central Limit Theorem: For large batch size b,

1
b

b∑
j=1

∇θℓ(Fθ(xj), yj) ∼ N
(
∇L(θ), 1

b
Σ(θ)

)
where (xj, yj) are i.i.d. samples and Σ(θ) = Cov[∇θℓ(Fθ(x), y)].

Why Σ/b? For i.i.d. samples gj = ∇θℓ(Fθ(xj), yj):

Cov

[
1
b

b∑
j=1

gj

]
=

1
b2

b∑
j=1

Cov[gj] =
1
b2 · b · Σ =

Σ

b

Key implications:
▶ Gradient noise variance ∝ 1/b
▶ Noise structure determined by Σ(θ)
▶ To halve noise, need 4× larger batches

Consequence: We can think about SGD as Monte Carlo optimization
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Beyond the Gaussian Approximation
The CLT approximation is convenient, but has limitations:

Empirical observation (Simsekli, Sagun, and Gurbuzbalaban 2019):
▶ Gradient noise in deep learning often exhibits heavy tails
▶ Better characterized by α-stable (SαS) distributions
▶ Tail decay: p(x) ∼ |x|−(1+α) where α ∈ (0, 2]
▶ Gaussian is the special case α = 2

Why this matters:
▶ Heavy tails ⇒ occasional large jumps in parameter space
▶ Large jumps help escape sharp minima (not captured by Gaussian model)
▶ Different optimizers interact differently with heavy-tailed noise

Forward reference:
▶ Lecture 5 develops this theory to explain Adam vs SGD generalization
▶ Adam dampens heavy-tailed noise ⇒ different implicit bias

Reminder: A good learning algorithm converges, but a great one learns!!
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SGD in Action

Title SA vs SAA Gradients GN SGD Exp Σ References 24



lruthot@emory.edu Comp Math and AI @ Optimization

Small Network (width=32): Vanilla SGD
Decision boundary:

Final accuracy:
Train: 79.75% — Test: 81.50%

Convergence dynamics:
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Large Network (width=8,192): The Regime Shift
Decision boundary:

Final accuracy:
Train: 98.87% — Test: 92.00%

Convergence dynamics:
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Σ: Optimization for Machine Learning
1. SA vs SAA formulations

▶ Robbins-Monro (1951): optimize expectations via stochastic gradients
▶ Vapnik (1998): optimize empirical risk on fixed datasets

2. Backpropagation as enabling technology

▶ Reverse-mode AD: exact gradient in O(p) time (same as forward pass)
▶ Memory-storage tradeoff: forward stores activations OR recompute on backward

3. Gauss-Newton in small regime

▶ Linearize network, Hessian emerges naturally: ∇2L ≈ JTHJ
▶ Small networks: GN dominates; Large networks: O(p2) memory barrier

4. SGD in over-parameterized regime

▶ Small networks: hyperparameter tuning essential (Optuna helps)
▶ Large networks: SGD natural fit, ∼92% test accuracy with benign overfitting
▶ Modern practice: overparameterization makes optimization easier, not harder
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Σ: Outlook
Open questions from this lecture:

▶ Why does SGD work so well in over-parameterized networks?
▶ Why does noise help optimization and generalization?

Where we’re headed:

▶ Lecture 4: SGD Deep Dive

▶ Implicit regularization mechanisms (early stopping, noise, flat minima)
▶ Continuous-time perspective: gradient flow and Langevin dynamics
▶ Edge of stability phenomenon in over-parameterized regime
▶ Why over-parameterization makes optimization easier

▶ Lecture 5: Modern Optimizers and Structured Methods

▶ Adaptive first-order: momentum, Adam, RMSprop and beyond
▶ Modern structured second-order: K-FAC Martens and Grosse 2015, Shampoo
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