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Reading List

Historical Context: Stochastic optimization starts in 50s, backpropagation enabled
ML in the 80s, acceleration/ implicit regularization are focus today.

Key Readings:
1. Robbins and Monro (1951) — Stochastic Approximation. Ann. Math. Stat.

Foundational convergence theory for SGD.

2. Rumelhart, Hinton, and Williams (1986) — Back-Propagating Errors. Nature

Classic paper that enabled neural network training.

3. Nocedal and Wright (2006) — Numerical Optimization, Springer.

Classical optimization theory and second-order methods.

4. Bottou, Curtis, and Nocedal (2018) — Optimization Methods for Large-Scale ML.
SIAM Review

Comprehensive survey of SA vs SAA framework.

5. Baydin et al. (2018) — Automatic Differentiation in ML: A Survey. JMLR

Forward/reverse mode AD for backpropagation.

Lecture Outline: SA vs SAA — Backprop & AD — Gauss Newton — SGD Basics
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Roadmap: Optimization for Machine Learning

Question: How to train neural networks with millions to billions of parameters?

Four foundational pillars:
1. SA vs SAA: Two paradigms for stochastic optimization
Robbins-Monro (1951) vs Vapnik (1998)

2. Efficient gradients: The enabling technology
Backpropagation makes O(p) gradient computation possible

3. Gauss Newton methods: Appeal and computational challenges
O(p?) memory, O(p?) computation, and SAA/SA tension

4. SGD as prototype SA algorithm: Simple, scalable, surprisingly effective
Convergence theory + sampling perspective: noise as feature, not bug
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Running Example: Peaks Classification (Data + Model)

Dataset: Two-Layer MLP Architecture:
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R A X N SO, ((Fo(x),y) = —y' Fo(x) + log (eT exp (Fe(X)))

. _ 1 1 2 2
» 2D Peaks function Parameters: 6 = (W(), b(), W) b))

> 5 classes (level sets) p=(2x32+432)+ (32 x5+5) =261

» 1000 i.i.d samples Goal: Find ¢* € R?! minimizing £(0)
U([-3,3%)
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Stochastic Approximation vs Sample
Average Approximation
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Two Ways to Minimize Expected Loss

Sample Average Approximation (SAA) Stochastic Approximation (SA)
Vapnik & Chervonenkis, 1998 Robbins & Monro, 1951
Setup: Fix dataset and min empirical loss Setup: Minimize expected loss

N . '
0* = arg min % ZK(Fg(xi), Yi) 0" = arg;mnE(W) [L(Fa(x),y)]
9 i=1

Algorithm: Any deterministic optimization Algorithm: Stochastic gradient descent

method:
01 =0, — 1 Vo[l(Fp(x),y)]
Or1 = 0; — H™'VoLy(6;) Ny
fori.i.d. samples (x,y).

Theory: Converges if gradient is unbiased,

Theory: Rich statistical learning theory (VC learning rate suitable
dimension, generalization bounds) .
Advantage: Well-understood methods, no Advantage: simple, scalable, good for

_ streaming/online data, generalization
hyperparameters, parallel computation
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Mini-Batch SGD: The Practical Hybrid

Modern practice: combine benefits of both formulations

b
Or41 =6 — ?7% 121 Vol (Fp(xi),yi)
where {(x1,¥1),.-., (Xp,y5)} are i.i.d. samples from dataset
Interpretation ambiguity:
» SA view: improved gradient estimates using » samples (variance reduction)

» SAA view: stochastic approximation to batch gradient descent

Key terminology:
» Batch size b: number of samples per gradient computation
» Epoch: complete pass through training dataset (SAA concept)
> lteration: single parameter update step
» Learning rate 7: step size controlling update magnitude

mini-batch SGD balances variance reduction with computational efficiency
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Computing Gradients: The Enabling
Technology
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The Gradient Computation Challenge

Requirement: all optimization algorithms need VL(0)

» network with p parameters = gradient VL(0) € R?
» modern networks: p ~ 10° to 10'! parameters

» Example: BERT-base has 110M parameters

Why not finite differences? Naive approach dL/90; ~ [L(0 + he;) — L(0)]/h requires p forward
passes — prohibitive for p ~ 10!
The solution: Backpropagation

» computes exact gradient in O(p) operations

» same asymptotic cost as single forward pass

» exploits network structure via chain rule

» enables training of deep networks

efficient gradient computation via backpropagation enables deep learning
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Backpropagation: The Chain Rule in Action
Idea: compute gradient in backward pass using chain rule
Computational graph: network is simple DAG *

» nodes: variables (inputs, activations, outputs, loss)

£(,y)
@
» edges: operations (linear transforms, nonlinearities) ,

Two-pass algorithm:

1. Forward pass: compute and store activations '

a® —x 70 — wOLED ) — 5,0

2. Backward pass: propagate gradients (reverse order)

oL (0a\" oL
9al® | 9al® dalt+1)

cost O(p) — same order as forward pass

Title SA vs SAA Gradients GN SGD Exp = RECICYES 10




89 1lruthot@emory.ed Comp Math and Al @ Optimization

Modern AD Frameworks: PyTorch, JAX, TensorFlow

» automatic graph construction (dynamic or static)
» PyTorch: dynamic computation graphs
> TensorFlow: static graphs with eager execution
» JAX: functional transformations
» built-in reverse-mode AD
» PyTorch: .backward (), torch.autograd.grad()
» JAX: grad(), value_and_grad()
» TensorFlow: GradientTape
» handle complex control flow
» conditionals, loops, recursion
» dynamic architectures
> optimizations
» operator fusion for efficiency
» memory management and checkpointing
> graph compilation (XLA, TorchScript)

modern AD frameworks make backpropagation automatic and efficient
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Computing Gradients with JAX: Value and Grad

Automatic Differentiation in Action

import jax
import jax.numpy as jnp

# Define loss function

def loss_fn(params, X, y):
"""Compute softmax cross—entropy loss."""
pred = model (params, X)
return softmax_cross_entropy (pred, y)

# Get both loss value and gradient

loss_value, grad = jax.value_and_grad(loss_fn) (
params, X_batch, y_batch

)

# Update parameters (vanilla SGD)
params_new = params - learning_rate x grad

Key Features:
» Jax.grad returns gradient function
» jax.value_and_grad returns both
» Complexity: O(p) time, same as forward pass!
» Works via reverse-mode AD (backprop)
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Mathematical View
Given L: R? — R:
oL
00,
VL) = | :
oL
6,
Computational Cost:
» Forward pass: O(p)
» Backward pass: O(p)
» Total: O(p)

Enabling technology for deep
learning!



59 1lruthot@emory Comp Math and Al @ Optimization

Gauss-Newton Methods

vs SAA Gradients GN
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Gauss-Newton Derivation for General Convex Loss
Starting point: Per-sample loss ¢(Fy(x),y)

Step 1: Linearize network output around 6:

Fp(x) = Fy(x) + J(60) (x)(0 — bb)

where J(6y)(x) = aFge(X) ‘90

Step 2: Quadratic Taylor expansion of total loss: Substitute linearization into
L(0) =), L(Fg(x;),yi) and expand to second order.

€ R™*? is the Jacobian

V2£ ~ ZJITH,J,

where H; = V%E(&, y,-)|y:F90(Xi) is the Hessian of per-sample loss w.r.t. predictions
Different losses have different H structure
» Least-squares: H = I = J'J (classical GN)
> Softmax cross-entropy: H; = diag(p;) — p;p, for logits p;
Gauss-Newton naturally emerges from linearization + quadratic approximation
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Computing the Jacobian: Small Output Dimension

Key observation: For classification with m classes, output Fy(x) € R™ is small!

Jacobian via reverse-mode AD (backpropagation):
> J = 9% ¢ Rm*P requires m backward passes
» CIFAR-10: 10 classes = 10 backprops per sample

» Memory: can use less storage if computed batchwise and hidden features are large

JAX implementation: parallelize across samples

J = vmap (jacrev (F_fn)) (X) givesJ, e R™?fori=1,...,n
Gauss-Newton as dense linear algebra:

G= ZJ,THiJi e RP*P solve (G + \I)d = —VL

i=1
For small networks: GN = Jacobian stacking + dense solve
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The Appeal of Gauss-Newton Methods

041 =0, — G~ 'VL, where G = ZJ,-THiJi
i=1

Theoretical advantages:
» fast convergence — when fitting training data (low residual)

curvature adaptation — automatically adjusts step size based on local geometry

>

» affine invariance — robust to parameter scaling
» best-case: single step for quadratic problems
>

no hyperparameters — well-understood linesearch and trust region methods

Practical advantages:
» Parallelism — Jacobian computations can be done in large batches

question: if so good theoretically, why limited use in deep learning?
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Small Network: Gauss-Newton Performs Well

Predicted decision boundary:
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Final accuracy:
Train: 93.87% — Test: 91.50%
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Convergence dynamics:
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Computational Limitations: Memory and Storage Options
1. Storage choices for curvature information:

» Full Hessian: O(p?) memory

» Storage: p?> elements (25Mx25M = 625 trillion) for ResNet-50
» Our example: small network p = 261 = feasible (68KB)

» Jacobian: O(n x m) memory (per-sample outputs x parameters)
» For classification: typically m < p, but n can be large
> Need low-rank, quantization, or other compression techniques
2. Computational cost: building the Hessian
» Per-sample Jacobian computation: O(m) operations each (via AD)
» Hessian construction: O(n x m?) to form J'HJ

3. Matrix-free approach and its limitations:
» Preconditioning challenge: Without Hessian matrix, preconditioner hard to construct
» Typical CG cost: each iteration ~ 2 SGD epochs of stochastic gradient computation
» Result: Competition with SGD is lost in wall-clock time!
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Statistical and Geometric Limitations

4. Stochastic optimization challenges:
» accurate Hessian estimation requires large batches
» tension: SAA (b > 1 for accurate curvature) vs SA (b small)
» small-batch Hessian too noisy for reliable updates
» implicit regularization benefits of SGD noise lost with large batches

5. Non-convexity in neural networks:
» Hessian may be indefinite (negative eigenvalues)
» Newton direction may not be descent direction
» requires modifications: trust regions, line search, damping
» further increases computational overhead

Path forward:
» structured approximations exploiting network architecture
» Lecture 5: modern approaches (K-FAC Martens and Grosse 2015, Shampoo)
with tractable curvature

structured approximations enable practical adaptive methods
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SGD: Convergence and Basic Properties
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SGD Convergence in a Nutshell

mein L) = rngin Exy [((Fo(x),y)]

SGD Update: 0,1 = 6, — n,Vol(Fy,(x,),y:), Where (x,,y,) ~ P i.i.d.
Requirement 1 - Unbiasedness:

E[Vol(Fy(x),y)] = VL)

Requirement 2 - Robbins-Monro Conditions:
> =00 (reachoptimum) ) "’ <oo (control noise)
=1 =1

Classical Convergence Results (assume o2 = E[||Vy/ — VL||!] < o0):
> If problem is convex: E[L(6,) — L(6%)] < & + Cro™n,
> (C; depends on: initial distance/suboptimality, smoothness and gradient bound of loss
» Optimization error O(1/+/t) + noise-induced error O(a>n,)
» Robbins-Monro: n, — 0 makes noise term vanish
> If problem is non-convex: min,<, E[|VL(6,)|]?] < & + %
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Mini Batches as Noise Reduction
Central Limit Theorem: For large batch size b,

l% z}: Vol(Fo(x)),y;) ~ N (Vﬁ(a)’ %E(QO

where (x;,y,) are i.i.d. samples and X(0) = Cov|[Vl(Fy(x),y)].
Why X/b? For i.i.d. samples g; = Vyl(Fy(x;),y;):

[Zg,] szCOVg] blb-Z:

SN’

Key implications:
» Gradient noise variance « 1/b
» Noise structure determined by X(0)
» To halve noise, need 4 x larger batches

Consequence: We can think about SGD as Monte Carlo optimization
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Beyond the Gaussian Approximation
The CLT approximation is convenient, but has limitations:

Empirical observation (Simsekli, Sagun, and Gurbuzbalaban 2019):
» Gradient noise in deep learning often exhibits heavy tails
» Better characterized by «a-stable (SaS) distributions
» Tail decay: p(x) ~ |x|~U*+*) where a € (0, 2]
» Gaussian is the special case « = 2

Why this matters:
» Heavy tails = occasional large jumps in parameter space
» Large jumps help escape sharp minima (not captured by Gaussian model)
» Different optimizers interact differently with heavy-tailed noise

Forward reference:
> Lecture 5 develops this theory to explain Adam vs SGD generalization
» Adam dampens heavy-tailed noise = different implicit bias

Reminder: A good learning algorithm converges, but a great one learns!!
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SGD in Action
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Small Network (width=32): Vanilla SGD

Convergence dynamics:

Decision boundary:
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Large Network (width=8,192): The Regime Shift

Decision boundary: Convergence dynamics:
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Final accuracy: 107
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>2: Optimization for Machine Learning

1. SA vs SAA formulations
» Robbins-Monro (1951): optimize expectations via stochastic gradients
» Vapnik (1998): optimize empirical risk on fixed datasets

2. Backpropagation as enabling technology
» Reverse-mode AD: exact gradient in O(p) time (same as forward pass)
» Memory-storage tradeoff: forward stores activations OR recompute on backward

3. Gauss-Newton in small regime
» Linearize network, Hessian emerges naturally: V2L ~ J'HJ
» Small networks: GN dominates; Large networks: O(p*) memory barrier

4. SGD in over-parameterized regime
» Small networks: hyperparameter tuning essential (Optuna helps)
» Large networks: SGD natural fit, ~92% test accuracy with benign overfitting
» Modern practice: overparameterization makes optimization easier, not harder

Title SA vs SAA Gradients GN SGD Exp b References 27




’ﬂ lruthot@emory.edu

>

Title

Outlook

Open questions from this lecture:

» Why does SGD work so well in over-parameterized networks?
» Why does noise help optimization and generalization?

Where we’re headed:

> Lecture 4: SGD Deep Dive

» Implicit regularization mechanisms (early stopping, noise, flat minima)
» Continuous-time perspective: gradient flow and Langevin dynamics

» Edge of stability phenomenon in over-parameterized regime

» Why over-parameterization makes optimization easier

» Lecture 5: Modern Optimizers and Structured Methods

» Adaptive first-order: momentum, Adam, RMSprop and beyond
» Modern structured second-order: K-FAC Martens and Grosse 2015, Shampoo
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