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Reading List
Historical Context: Modern understanding of SGD extends beyond convergence to
implicit regularization, landscape structure, and continuous-time dynamics.

Key Readings:
1. Hardt et al. (2016) – Train Faster, Generalize Better: Stability of SGD. ICML

Early stopping and implicit regularization.

2. Keskar et al. (2017) – Large-Batch Training: Generalization Gap and Sharp
Minima. ICLR
Batch size effects on generalization.

3. Cohen et al. (2021a) – Gradient Descent at the Edge of Stability. ICLR
Neural networks train near stability boundary.

4. Jacot et al. (2018) – Neural Tangent Kernel. NeurIPS
Infinite-width networks and lazy training.

5. Mei et al. (2018) – A Mean Field View of Two-Layers Neural Networks.
Proves that SGD dynamics, in scaling limit, are governed by a nonlinear PDE.

Lecture Outline: SGD Properties → Learning Rate/Batch Size → Continuous-Time
→ Implicit Regularization → Landscape
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Connection to Lecture 3
Lecture 3: SA/SAA, Gauss-Newton, SGD basics
▶ SA/SAA framework for optimization under uncertainty
▶ Backpropagation: Efficient gradient computation
▶ Computational challenges for Gauss-Newton
▶ Key observation: Lazy regime works surprisingly well!

Guiding question for this lecture:

Why does SGD in the lazy regime perform comparably to
Gauss-Newton?

Roadmap: Modern theory of SGD
1. Flat vs. sharp minima: geometry and generalization
2. Implicit regularization of continuous-time SGD
3. Regularization effects of finite step size SGD
4. Over-parameterization: Neural tangent kernel and mean field perspectives
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Flat vs. Sharp Minima
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Flat vs. Sharp Minima: Geometry and Generalization

Definition: At a local minimum θ∗, let H = ∇2L(θ∗) be the Hessian.
▶ Sharp minimum: λmax(H) ≫ 0 (high curvature, loss rises quickly)
▶ Flat minimum: λmax(H) ≈ 0 (low curvature, loss rises slowly)

Generalization hypothesis: Based on empirical Evidence
▶ Flat minima correlate with better test error (robust to perturbations)
▶ Sharp minima correlate with overfitting
▶ Small-batch SGD finds flatter minima than large-batch Keskar et al. (2017)

Caveat: Diagonal reparameterization θ′ = Dθ with D = diag(α1, . . . , αp):

∇2
θ′L = D−1∇2

θLD−1

Eigenvalues scale independently ⇒ curvature arbitrary without changing function!
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The Curvature Measurement Problem
Reparameterization is necessary:
▶ λmax(H) is not invariant to parameter rescaling
▶ Same function can appear arbitrarily sharp or flat depending on parameterization
▶ Hessian eigenvalues unreliable as generalization predictors Dinh et al. (2017)

Resolution: Fisher Information as metric Amari (1998)

Information Geometric Sharpness (IGS): Gradient norm in Fisher metric

IGS(θ) =
1
N

N∑
i=1

∇θℓ
⊤
i · F(θ)† · ∇θℓi, with F(θ) =

1
N

N∑
i=1

J⊤
i Ji

Using Ji = ∇θFθ(xi) from Lecture 3.

IGS changes in predictions per unit parameter change ⇒ reparameterization-invariant
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Continuous-Time Limit of SGD
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Review: Gradient Flow ODE & Minimum Norm Bias

dθ
dt

= −∇L(θ(t)) as limit of GD θt+1 = θt − η∇L(θt)

For Linear Models: L(θ) = ∥Aθ − b∥2 with θ(0) = 0

1. Time-dependent regularization:

θ(t) = argmin
θ

∥Aθ − b∥2 +
1
t
∥θ∥2

Early stopping at time t ≡ regularization strength 1/t
2. Asymptotic limit (t → ∞): Minimum norm bias

θ∞ = argmin {∥θ∥2 : L(θ) = 0}
Among all global minima, GD selects the one closest to initialization

Open problem: Extension to (Nonlinear) Neural Networks:
▶ What is the relevant “complexity measure”? Not simple ℓ2 norm
▶ Connection to margin maximization, flatness, NTK regime

early stopping ≡ implicit regularization; GD prefers simple solutions
Title Flat/Sharp Cont BWE NTK&MF Σ 8



lruthot@emory.edu Comp Math and AI @ SGD Theory

From SGD to Stochastic Gradient Flow
Recall that SGD uses Monte Carlo estimates of the gradient:

θt+1 = θt − η

[
1
b

b∑
j=1

∇θℓ(Fθt(xj), yj)

]
= θt − η∇L(θt) +

η√
b
Σ1/2(θt)ξt where ξt ∼ N (0, I)

Continuous limit yields Stochastic Gradient Flow (SGF):

dθt = −∇L(θt) dt +
√

2D(θt) dWt, where D(θt) =
η

2b
Σ(θt) (diffusion matrix)

Connection to implicit regularization for least squares Ali et al. (2020):
▶ Mean trajectory: E[θSGF(t)] = θGF(t)
▶ SGF follows Tikhonov regularization path in expectation

But what does SGD converge to as t → ∞?

Title Flat/Sharp Cont BWE NTK&MF Σ 9



lruthot@emory.edu Comp Math and AI @ SGD Theory

Deriving the Stationary Distribution of SGF
Reminder (Feynman-Kac): SDE for x(t) induces PDE for density p(x, t).

dx = −g(x) dt +
√

2D dW ⇒ ∂p
∂t

= ∇ · [g p + D∇p]

Langevin approximation: For D(θ) = 1
2ϵI (ϵ = η/b), SGF leads to Fokker Planck:

dθt = −∇L(θt) dt +
√
ϵ dWt ⇒ ∂p

∂t
= ∇ ·

[
∇L(θ) p(θ) +

ϵ

2
∇p(θ)

]
Stationary condition: At equilibrium, detailed balance holds if

∇L(θ) p(θ) +
ϵ

2
∇p(θ) = 0 ⇒ ∇p(θ) = −2

ϵ
∇L(θ)p(θ)

This holds for Gibbs distribution

p(θ) = Z−1 exp

(
−2L(θ)

ϵ

)
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Interpreting the Stationary Distribution of SGF
Langevin SDE converges to Gibbs distribution with temperature ϵ:

p(θ) ∝ exp

(
−2L(θ)

ϵ

)
, where ϵ =

η

b

Interpretation:
▶ Flat minima = wide basins = high probability at finite ϵ

▶ Sharp minima = narrow basins = low probability at finite ϵ

▶ Temperature ϵ ∝ η/b controls smoothness of distribution

Consequences:
▶ Small ϵ (large batches): concentrate near global minimum
▶ Large ϵ (small batches): broader exploration, prefer flat minima

Continuous-time perspective shows implicit bias and sampling perspective
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Limitation of Cont’ Time: Edge of Stability Phenomenon

Classical stability condition: GD stable if ηλmax(H) < 2
where λmax(H) is maximum eigenvalue of Hessian H = ∇2L(θ).

Empirical observation Cohen et al. (2021b):
In deep learning, training often operates at

λmax(H) ≈ 2
η

This is exactly at the stability boundary!

The catapult mechanism:
1. GD moves toward minimum, curvature increases
2. When ηλmax(H) > 2, GD overshoots
3. System “catapults” out of sharp region
4. Curvature settles back to λmax(H) ≈ 2/η

In practice, η ̸→ 0. Need to understand finite step effects...
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Regularization of Finite Step Size SGD
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Backward Error Analysis: Setup

Edge of stability shows importance of finite
step size:

θt+1 = θt − η∇L(θt) ̸= dθ
dt

= −∇L(θ)

Goal: Find Lmod such that discrete GD
follows gradient flow on Lmod

Tool: Backward Error Analysis.
Derive the modified loss that discrete GD
optimizes

1.2 1.0 0.8 0.6 0.4
1

1.4

1.6

1.8

2.0

2.2

2

Flow on L
Flow on Lmod
GD ( =0.006)
Start

Flow on L Flow on Lmod

• Discrete GD iterates
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Derivation Part 1: Taylor Expansion in Time

Setup: Discrete trajectory satisfies θ(t + η) ≈ θt+1 and (by Taylor in η)

θ(t + η) = θ(t) + η
dθ
dt

∣∣∣∣
t
+

η2

2
d2θ

dt2

∣∣∣∣
t
+ O(η3)

Setting this equal to discrete update θ(t + η) = θ(t)− η∇L(θ(t)) gives:

η
dθ
dt

+
η2

2
d2θ

dt2 = −η∇L(θ) ⇒ dθ
dt

+
η

2
d2θ

dt2 = −∇L(θ)

To find a modified GF dθ
dt = −∇Lmod(θ), note

d2θ

dt2 = − d
dt
[∇Lmod] = −∇2Lmod ·

dθ
dt

= ∇2Lmod · ∇Lmod

Idea: Write Lmod = L+ η
4 ∥∇L∥2, then (see Barrett and Dherin (2021))

∇Lmod = ∇L+
η

2
∇2L · ∇L+O(η2)

Finite steps implicitly add a gradient magnitude penalty!
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Interpretation and Implications
Modified loss breakdown:

Lmod(θ) = L(θ)︸︷︷︸
training loss

+
η

4
∥∇L(θ)∥2︸ ︷︷ ︸

gradient penalty

+O(η2)

Flatness preference:
▶ Discrete GD prefers regions where ∥∇L∥ ≈ 0
▶ Not just low loss, but flat loss landscape!
▶ Penalty strength controlled by learning rate η

Larger η → stronger implicit regularization
▶ Small η: weak penalty, nearly pure GD
▶ Moderate η: balanced trade-off
▶ Large η: strong flatness bias (but may not converge!)

Finite η is a feature, not a bug: it creates implicit regularization!
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Extension to Stochastic Gradient Descent
Recall from Block 2: SGD noise leads to Langevin dynamics

dθ = −∇L(θ)dt +
√
ϵdW, ϵ ∝ η/b

For discrete SGD: Similar backward error analysis applies

Key assumptions needed:
1. Gradient noise is approximately isotropic (common in practice)
2. Noise variance scales as σ2/b (standard assumption)

Result: Same modified loss structure + temperature effects Smith et al. (2021)

Lmod(θ) = L(θ) + η

4
∥∇L(θ)∥2 + O(η/b) + O(η2)

Note: For b ≫ 1, O(η/b) ≪ O(η); for small batches (b = O(1)), both effects are O(η)

Temperature ϵ = η/b controls additional noise-driven exploration
▶ Small batches: more noise, broader exploration of flat regions
▶ Large batches: less noise, sharper convergence to nearest minimum

SGD combines gradient penalty (finite η) AND noise exploration (small b)
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Finite Step Size Advantage
Recall from previous slide: Discrete GD optimizes

Lmod(θ) = L(θ) + η

4
∥∇L(θ)∥2

Consequence: Larger η → stronger flatness preference

Explains empirical observations [Evidence]:
▶ Moderate learning rates (η ∈ [0.01, 0.1]) generalize better than tiny η
▶ Finite η acts as implicit regularizer
▶ “Sweet spot” balances convergence speed vs. implicit regularization

Connection to generalization:
▶ Flat minima → small ∥∇L∥ throughout basin
▶ Flat minima → robust to perturbations
▶ Robustness often correlates with test performance

take away: finite steps are a feature, not a bug!
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Over-Parametrization
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The Over-Parametrization Phenomenon
Modern neural networks: Parameters p far exceed training samples n

Examples:
▶ GPT-3: p ≈ 175 billion parameters
▶ ResNet-50: p ≈ 25 million on ImageNet (n = 1.2 million)
▶ Our peaks example: p = 128 × 2 + 128 + 5 × 128 + 5 = 901 on n = 600

Classical learning theory prediction:
▶ p ≫ n should lead to catastrophic overfitting
▶ Infinitely many interpolating solutions (training loss = 0)
▶ No reason to expect good generalization

Reality:
▶ Over-parametrization often improves generalization (recall double descent)
▶ Training converges reliably from random initialization
▶ Lazy regime works surprisingly well (Lecture 3)

Goal: Understand why the SGD finds good weights for huge networks
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From Gauss-Newton to Neural Tangent Kernel

Goal: Find θ∗ such that fθ∗(x) = y for all training data pairs (x, y)

Second-order Taylor expansion: Concatenate all data into vectors X, Y

Y = fθ∗(X) = fθ0(X) + Jθ0(X) δθ +
1
2
δθT∇2

θ̃
f (X) δθ

where θ̃ lies between θ0 and θ∗, δθ = θ∗ − θ0, Jaobian J = ∇θf (X)|θ0

Assume: Squared loss function and quadratic term is negligible

Y − fθ0(X) ≈ Jθ0(X) δθ =⇒ solve Jθ0(X) δθ = R where R = Y − fθ0(X)

Consequence: Gauss-Newton converges in one step.

Can we design network, so that we fit all data and the quadratic term vanishes?
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The NTK Parameterization: A Worked Example
Architecture: Single hidden layer with width n

f (x) =
1√
n

n∑
i=1

aiσ(wT
i x) =

1√
n

aTσ(Wx)

with ai ∼ N (0, 1), wi ∼ N (0, Id/d), total parameters p = n(1 + d)

Why 1/
√

n? (architectural factor, NOT initialization variance)
▶ Each term aiσ(wT

i x) = O(1) (i.i.d.)
▶ Sum of n terms would be O(

√
n) by CLT → too large!

▶ The 1/
√

n ensures f (x) = O(1) at initialization

Jacobian:
∂f
∂ai

=
1√
n
σ(wT

i x) = O(1/
√

n),
∂f
∂wij

=
1√
n

aiσ
′(wT

i x)xj = O(1/
√

n)

Hessian (of f , not loss!):
∂2f

∂ai∂aj
= 0,

∂2f
∂wik∂wjl

=
δij√

n
aiσ

′′(wT
i x)xkxl = O(1/

√
n)

the 1/
√

n appears once in Jacobian, once in Hessian
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The Dual Perspective: From Parameters to Functions
Assume overparameterization (p > N): Jθ0(X) δθ = R has infitely many solutions

Representer theorem: The minimum-norm solution has the form

δθ∗ = Jθ0(X)Tα for some α ∈ RN

Substitute into Jθ0(X) δθ = R:

Jθ0(X)(Jθ0(X)Tα) = R =⇒ (Jθ0(X)Jθ0(X)T)α = R

Define: K = Jθ0(X)Jθ0(X)T ∈ RN×N (the NTK Gram matrix)

Solution: α = K−1R, so δθ∗ = Jθ0(X)TK−1(Y − fθ0(X))

Why K converges Jacot et al. (2018): K =
∑p

i=1(∇θif )(∇θif )
T

Sum of p rank-1 matrices, each O(1/p) → deterministic (spd!) limit by LLN

shift from p-dimensional parameter space to N-dimensional function space
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Why the Quadratic Term Vanishes
The key bound:

|δθT∇2
θf (ξ) δθ| ≤ ∥∇2

θf (ξ)∥2 · ∥δθ∥2
2

1. Parameter change is bounded: ∥δθ∥2 = O(1)
▶ Min-norm solution: δθ∗ = JT

θ0
(Jθ0J

T
θ0
)−1R (recall: GD → min-norm)

▶ K = Jθ0J
T
θ0
∈ RN×N: Kij =

∑p
k=1 O(1/n) = O(1) (N fixed, p = O(n))

▶ So K,K−1, r = O(1) ⇒ ∥δθ∗∥2
2 = rTK−1r = O(1)

2. Hessian spectral norm vanishes: ∥∇2
θf∥2 = O(1/

√
n)

▶ From previous slide: each non-zero entry is O(1/
√

n)
▶ Block-diagonal structure: spectral norm = max block norm = O(1/

√
n)

▶ Key: The 1/
√

n factor appears in every second derivative

The conclusion:

|δθT∇2
θf (ξ) δθ| ≤ O(1/

√
n) · O(1) = O(1/

√
n) → 0

Hessian vanishes and change in weights stays bounded!
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Connection to Kernel Methods & Lecture 3

Prediction at training data:

f ∗(X) = fθ0(X) + KK−1(Y − fθ0(X)) = Y

Prediction at new point xnew:

f ∗(xnew) = fθ0(xnew)+K(xnew,X)K−1(Y−fθ0(X))

where K(xnew,X) = Jθ0(xnew)Jθ0(X)T

This IS kernel regression!

NTK: lazy training → kernel methods!
NTK eigenspectrum converges as width → ∞

Title Flat/Sharp Cont BWE NTK&MF Σ 25



lruthot@emory.edu Comp Math and AI @ SGD Theory

NTK Regime: Limitations
The NTK theory is elegant, but has important limitations:

1. No feature learning
▶ Kernel K is fixed at random initialization
▶ Network cannot adapt representations to the task
▶ Features are “frozen”: only linear combinations change

2. Infinite-width idealization
▶ Real networks have finite width and DO learn features
▶ Finite-width networks often outperform NTK predictions
▶ The “rich” or “feature learning” regime exists beyond lazy

3. Gap between theory and practice
▶ NTK explains convergence but not why learned features help
▶ Modern architectures (transformers) show clear feature learning
▶ Active research: when does feature learning emerge?

NTK explains lazy regime; finite-width networks can do more
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Beyond Lazy: The Mean-Field Viewpoint
Key insight: Different scaling leads to different infinite-width limits

NTK approach (lazy regime):
▶ Initialize wj ∼ N (0, 1/n), aj ∼ N (0, 1), output scaled by 1/

√
n

▶ Kernel K fixed at initialization ⇒ no feature learning

Mean-field approach (feature learning regime):
▶ Goal: Force features to evolve for every n
▶ Initialize wj ∼ N (0, 1), keep aj = 1, output scaled by 1/n
▶ Track the distribution of weights wt ∼ µt rather than individual parameters

Particle interpretation:
▶ Each neuron is a “particle” in weight space
▶ The population of particles evolves collectively
▶ Width sufficiently large → no need to track particles individually

mean-field scaling allows feature learning in the infinite-width limit
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Distributional Dynamics (DD)
Setup: Two-layer network with mean-field scaling

f (x; θ) =
1
n

n∑
j=1

σ(wj · x)

Key result Mei et al. (2018) and Chizat and Bach (2018):
As n → ∞, SGD dynamics converge to a PDE on measure space:

∂tµt = ∇w ·
(
µt∇w

δL
δµ

(µt)

)
where δL

δµ
is the functional derivative of the loss.

Interpretation: This is a Wasserstein gradient flow of the loss functional.

With SGD noise → Fokker-Planck equation:

∂tµt = ∇w ·
(
µt∇w

δL
δµ

)
+

1
β
∆wµt

SGD on parameters → gradient flow on probability measures
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Mean-Field Theory: Implications
What mean-field theory provides:

1. Global convergence: Proven for 2-layer networks
▶ Gradient flow on µt converges to global optimum
▶ Loss landscape has “no bad traps” in distribution space

2. Stochastic attractivity
▶ SGD noise drives system toward simpler solutions
▶ Implicit bias toward low-complexity subnetworks

Limitations: Open problems
▶ Rigorous results mainly for shallow (2-layer) networks
▶ Extension to deep networks is active research
▶ Gap between mean-field limit and practical finite-width behavior

mean-field: rigorous foundation for feature learning; deep theory remains open
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Mean Field Network (width=4096): Adam
Predicted decision boundary:

Final accuracy:
Train: 99.87% — Test: 92.00%

Convergence dynamics:
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NTK vs Mean-Field: Comparison

Feature NTK (Lazy) Mean-Field
Infinite-width limit Fixed kernel Weight distribution evolves
Parameter behavior Stay near initialization Particles move freely
Dynamics Linear (kernel fixed) Nonlinear PDE
Feature learning No Yes
Math framework Kernel regression Wasserstein gradient flow
Proven results Convergence to RKHS Global optima (shallow)

The relationship:
▶ NTK is a special case: the “zero learning” limit
▶ Mean-field captures dynamics when features are allowed to evolve
▶ Real networks operate between these two regimes

NTK = lazy limit; mean-field = feature learning limit
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Summary and Outlook
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Σ: Modern SGD Theory

1. Convergence Properties and Sampling Perspective:
▶ Unbiased gradient estimates, Robbins-Monro conditions
▶ CLT for SGD noise, variance

2. Implicit Regularization in Continuous Time:
▶ Early stopping ↔ minimum norm bias
▶ Langevin dynamics: noise enables exploration

3. Finite Step Reality:
▶ Backward error: finite η penalizes η

4∥∇L∥2

▶ Effective temperature: Teff ∝ η/b
▶ Penalty and noise prefer flat minima ⇒ implicit regularization

4. Over-parametrization:
▶ NTK regime: lazy training, kernel fixed, convergence guaranteed
▶ Mean-field: feature learning possible, distributional dynamics
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Outlook: Other Important Topics and Open Questions

Topics we mentioned but didn’t cover:
▶ Loss landscape geometry: Mode connectivity, solution manifolds
▶ Saddle point escape: GD avoids strict saddles, perturbed GD escapes fast
▶ Sharp vs. flat minima: Hessian spectrum, PAC-Bayes bounds
▶ Large-batch training: Warmup schedules, critical batch size

Open research questions:
▶ Finite width: Beyond NTK/mean-field infinite-width limits
▶ Deep architectures: Theory mostly for shallow networks
▶ Feature learning dynamics: When and how features emerge

This lecture: Why SGD works (theory + mechanisms)
Next lecture: How to make optimization faster and more efficient

Title Flat/Sharp Cont BWE NTK&MF Σ 34



lruthot@emory.edu Comp Math and AI @ SGD Theory

References I

Ali, Alnur et al. (2020). “The Implicit Regularization of Stochastic Gradient Flow for
Least Squares”. In: International Conference on Machine Learning (ICML). PMLR,
pp. 233–244.
Amari, S.-I. (1998). “Natural Gradient Works Efficiently in Learning”. In: Neural
Computation 10.2, pp. 251–276.
Barrett, David GT and Benoit Dherin (2021). “Implicit gradient regularization”. In:
International Conference on Learning Representations.
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