

Computational Mathematics and AI

Lecture 5: Efficient Optimization Methods

Lars Ruthotto

Departments of Mathematics and Computer Science

lruhott@emory.edu

 [larsruthotto](https://www.linkedin.com/in/larsruthotto)

[slido.com #CBMS25](https://www.slido.com/#CBMS25)

Reading List

Historical Context: Adaptive methods and structured second-order approximations can accelerate neural network training but generalization remains a challenge.

Key Readings:

1. Kingma and Ba (2015) – Adam: A Method for Stochastic Optimization. *ICLR*
The modern standard adaptive optimizer
2. Loshchilov and Hutter (2019) – Decoupled Weight Decay Regularization. *ICLR*
AdamW: fixing weight decay in Adam
3. Chen et al. (2023) – Symbolic Discovery of Optimization Algorithms. *NeurIPS*
Lion: evolutionary-discovered sign-based optimizer
4. Amari (1998) – Natural Gradient Works Efficiently in Learning. *Neural Comp.*
Parameterization-invariant optimization
5. Martens and Grosse (2015) – K-FAC: Kronecker-Factored Approximate Curvature. *ICML*
Practical second-order methods

Lecture Outline: Motivation → Momentum → Adam/Lion → K-FAC

Connection to Lecture 4

What we established in Lecture 4:

- ▶ SGD converges to stationary points (theory)
- ▶ Implicit regularization: early stopping, minimum norm, flatness preference
- ▶ Continuous-time view: Langevin dynamics, temperature $T \propto \eta/b$
- ▶ Over-parametrization: NTK and mean field regime create expressive networks

Key conclusion: Lazy regime works reliably!

- ▶ SGD in lazy regime performs comparably to Gauss-Newton (Lecture 3)
- ▶ Now we understand *why*: benign landscapes + implicit regularization

Today's question:

Can we make optimization more efficient, avoid hyperparameters without hurting generalization?

SGD and GN Pain Points

1. Learning rate sensitivity:

- ▶ Too small: slow convergence, limited exploration
- ▶ Too large: divergence or oscillation
- ▶ No guidelines: need careful tuning for each problem

2. Ill-conditioning:

- ▶ Loss landscape has different curvatures in different directions
- ▶ Single learning rate can't optimize all directions equally
- ▶ Condition number $\kappa = \lambda_{\max}/\lambda_{\min}$ hurts convergence

3. No momentum / variance reduction:

- ▶ Each step independent of history
- ▶ Cannot accelerate in consistent gradient directions
- ▶ Cannot slow down in oscillatory directions

Gauss-Newton solved these via curvature... but is infeasible for large NNs!

Roadmap: Efficient SGD Variants

1. Momentum Methods

- ▶ Heavy ball method: accumulate velocity
- ▶ Nesterov acceleration: look-ahead gradient
- ▶ Cost: $O(p)$ memory (one extra vector)

2. Adaptive Gradient Methods

- ▶ Per-parameter learning rates from gradient history
- ▶ Adam, AdamW, Lion
- ▶ Cost: $O(2p)$ memory (two moment vectors)

3. Outlook: Efficient Second-Order

- ▶ Approximate curvature with structure
- ▶ K-FAC: Kronecker-factored approximation
- ▶ Cost: $O(p + \sum n_\ell^2)$ memory

trade memory for faster convergence and robustness

Momentum Methods

Heavy Ball Method: Adding Memory

Motivation: Ball rolling down a hill accumulates velocity

SGD with Momentum Polyak 1964:

$$\mathbf{v}_{t+1} = \beta \mathbf{v}_t + \nabla L(\theta_t) \quad (\text{accumulate velocity})$$

$$\theta_{t+1} = \theta_t - \eta \mathbf{v}_{t+1} \quad (\text{update parameters})$$

where $\beta \in [0, 1)$ is momentum coefficient (typically $\beta = 0.9$)

Key properties:

- ▶ **Acceleration:** Builds speed in consistent gradient directions
- ▶ **Damping:** Cancels oscillations in inconsistent directions
- ▶ **Memory:** $O(p)$ extra storage for velocity vector

Convergence improvement: Proven for convex quadratics:

- ▶ GD: iterations $\propto \kappa$ (condition number)
- ▶ Momentum: iterations $\propto \sqrt{\kappa}$ (quadratic speedup!)

momentum trades $O(p)$ memory for $\sqrt{\kappa}$ speedup

Nesterov Accelerated Gradient

Key idea Nesterov 1983: Compute gradient at *look-ahead* position

$$\begin{aligned}\tilde{\theta}_t &= \theta_t + \beta(\theta_t - \theta_{t-1}) \quad (\text{look ahead}) \\ \theta_{t+1} &= \tilde{\theta}_t - \eta \nabla L(\tilde{\theta}_t) \quad (\text{gradient at look-ahead})\end{aligned}$$

Intuition:

- ▶ Heavy ball: gradient at current position, then add momentum
- ▶ Nesterov: first apply momentum, then compute gradient
- ▶ “Correct” the momentum direction before overshooting

Convergence:

- ▶ Achieves optimal $O(1/t^2)$ rate for smooth convex functions
- ▶ Heavy ball: $O(1/t)$ (worse by factor t)
- ▶ Provably optimal among first-order methods (with optimal β)

Nesterov's look-ahead achieves optimal convergence rate

Adaptive Gradient Methods

The Adaptive Paradigm: Per-Parameter Learning Rates

Core idea: Adapt learning rate per parameter based on gradient history

$$\theta_{t+1} = \theta_t - \eta \text{ diag}(\sqrt{v_t} + 10^{-8})^{-1} g_t$$

where v_t accumulates information about gradient magnitude

Benefits:

- ▶ **Robustness:** Works across wider range of learning rates
- ▶ **Sparse features:** Larger updates to infrequent features
- ▶ **III-conditioning:** Automatically rescales for different curvatures

Connection to preconditioning:

- ▶ Adaptive methods = **diagonal preconditioning**
- ▶ Approximates diagonal of Fisher or empirical Hessian

Three generations:

1. **AdaGrad** Duchi, Hazan, and Singer 2011: Accumulate all gradients \Rightarrow LR decays too aggressively
2. **RMSprop** Tieleman and Hinton 2012: Exponential moving average \Rightarrow fixes decay
3. **Adam** Kingma and Ba 2015: Add momentum + bias correction

adaptive methods trade $O(2p)$ memory for robustness

Adam: Three Design Principles

Adam = Adaptive Moment Estimation Kingma and Ba 2015

Principle 1: Momentum (first moment)

- ▶ Exponential moving average of gradients: $\mathbf{m}_t = \beta_1 \mathbf{m}_{t-1} + (1 - \beta_1) g_t$
- ▶ Smooths gradient estimates, accelerates in consistent directions
- ▶ Hyperparameter: β_1 (typically 0.9)

Principle 2: Adaptive learning rates (second moment)

- ▶ Exponential moving average of squared gradients: $\mathbf{v}_t = \beta_2 \mathbf{v}_{t-1} + (1 - \beta_2) g_t^2$
- ▶ Scale learning rate inversely to typical gradient magnitude
- ▶ Hyperparameter: β_2 (typically 0.999)

Principle 3: Bias correction

- ▶ Moving averages initialized at zero \Rightarrow biased toward zero early
- ▶ Correct: $\hat{\mathbf{m}}_t = \mathbf{m}_t / (1 - \beta_1^t)$, $\hat{\mathbf{v}}_t = \mathbf{v}_t / (1 - \beta_2^t)$

Adam = momentum + adaptive rates + bias correction

Adam: Complete Algorithm

Hyperparameters: $\eta = 10^{-3}$, $\beta_1 = 0.9$, $\beta_2 = 0.999$, $\varepsilon = 10^{-8}$

Algorithm:

1. Initialize: $\mathbf{m}_0 = 0$, $\mathbf{v}_0 = 0$, $t = 0$
2. While not converged:
 - 2.1 $t \leftarrow t + 1$
 - 2.2 $g_t \leftarrow \nabla_{\theta} L(\theta_{t-1})$ (gradient)
 - 2.3 $\mathbf{m}_t \leftarrow \beta_1 \mathbf{m}_{t-1} + (1 - \beta_1)g_t$ (first moment)
 - 2.4 $\mathbf{v}_t \leftarrow \beta_2 \mathbf{v}_{t-1} + (1 - \beta_2)g_t^2$ (second moment)
 - 2.5 $\hat{\mathbf{m}}_t \leftarrow \mathbf{m}_t / (1 - \beta_1^t)$, $\hat{\mathbf{v}}_t \leftarrow \mathbf{v}_t / (1 - \beta_2^t)$ (bias correction)
 - 2.6 $\theta_t \leftarrow \theta_{t-1} - \eta \cdot \hat{\mathbf{m}}_t / (\sqrt{\hat{\mathbf{v}}_t} + \varepsilon)$ (update)

Memory cost: $O(2p)$ vs $O(p)$ for SGD

Defaults work remarkably well: Often used as-is without tuning

AdamW: Decoupled Weight Decay

Problem with L_2 regularization in Adam:

- ▶ Standard: Add $\lambda \|\theta\|^2$ to loss \Rightarrow gradient includes $2\lambda\theta$
- ▶ Adam adapts this regularization gradient like any other
- ▶ **Issue:** Adaptive scaling interferes with intended regularization strength

AdamW solution Loshchilov and Hutter 2019: Decouple weight decay from gradient

$$\theta_t \leftarrow \theta_{t-1} - \eta \cdot \left(\frac{\hat{\mathbf{m}}_t}{\sqrt{\hat{\mathbf{v}}_t} + \varepsilon} + \lambda \theta_{t-1} \right)$$

- ▶ Weight decay $\lambda\theta$ applied *after* adaptive scaling
- ▶ Regularization strength independent of gradient magnitude

When to use AdamW:

- ▶ Any time you use weight decay (almost always)
- ▶ Default for Transformers and language models
- ▶ PyTorch: `torch.optim.AdamW`

use AdamW when weight decay is needed (i.e., almost always)

Lion: Evolutionary Discovered Optimizer

Origin Chen et al. 2023: Discovered via AutoML (symbolic program search)

Algorithm: Sign-based update with momentum

$$c_t = \beta_1 \mathbf{m}_{t-1} + (1 - \beta_1) g_t \quad (\text{interpolate})$$

$$\theta_t = \theta_{t-1} - \eta \cdot \text{sign}(c_t) \quad (\text{sign-based update})$$

$$\mathbf{m}_t = \beta_2 \mathbf{m}_{t-1} + (1 - \beta_2) g_t \quad (\text{momentum for next step})$$

Key differences from Adam:

- ▶ **Sign-based:** Uses $\text{sign}(c_t)$ instead of scaled gradient
- ▶ **Memory:** $O(p)$ instead of $O(2p)$ (only one momentum vector)
- ▶ **Scale invariance:** Update magnitude independent of gradient scale

Typical hyperparameters:

- ▶ $\eta = 10^{-4}$ (typically 10× smaller than Adam)
- ▶ $\beta_1 = 0.9, \beta_2 = 0.99$

Lion = sign-based updates + momentum, memory-efficient alternative

When to Use Adam vs SGD vs Lion

Adam/AdamW advantages:

- ▶ **Robustness:** Works across wide LR range
- ▶ **Sparse features:** NLP, embeddings
- ▶ **Quick prototyping:** Defaults work

SGD (with momentum) advantages:

- ▶ **Vision tasks:** Better final accuracy
- ▶ **Well-tuned:** Can outperform Adam
- ▶ **Memory:** $O(p)$ vs $O(2p)$

Lion advantages:

- ▶ **Memory-efficient:** Same as SGD
- ▶ **Large-scale:** Competitive on big models
- ▶ **Scale-invariant:** Robust to gradient magnitude

Empirical patterns:

Domain	Typical Choice
NLP/Transformers	AdamW
Vision/CNNs	SGD + tuning
Transfer learning	Adam
Large-scale LLMs	AdamW or Lion
Memory-limited	Lion

Theory-practice gaps:

- ▶ **SGD generalizes better on vision:** Flatter minima?
- ▶ **Adam optimal for sparse gradients:** Diagonal preconditioning effective
- ▶ **Why domain-dependent?** Implicit bias differences unclear

Adaptive Methods: Summary

Evolution:

- ▶ **AdaGrad (2011):** Accumulate gradients → too aggressive decay
- ▶ **RMSprop (2012):** Exponential average → fixes decay
- ▶ **Adam (2015):** + Momentum + bias correction → dominant
- ▶ **AdamW (2017):** Decoupled weight decay → better regularization
- ▶ **Lion (2023):** Sign-based → memory-efficient alternative

Cost-benefit trade-off:

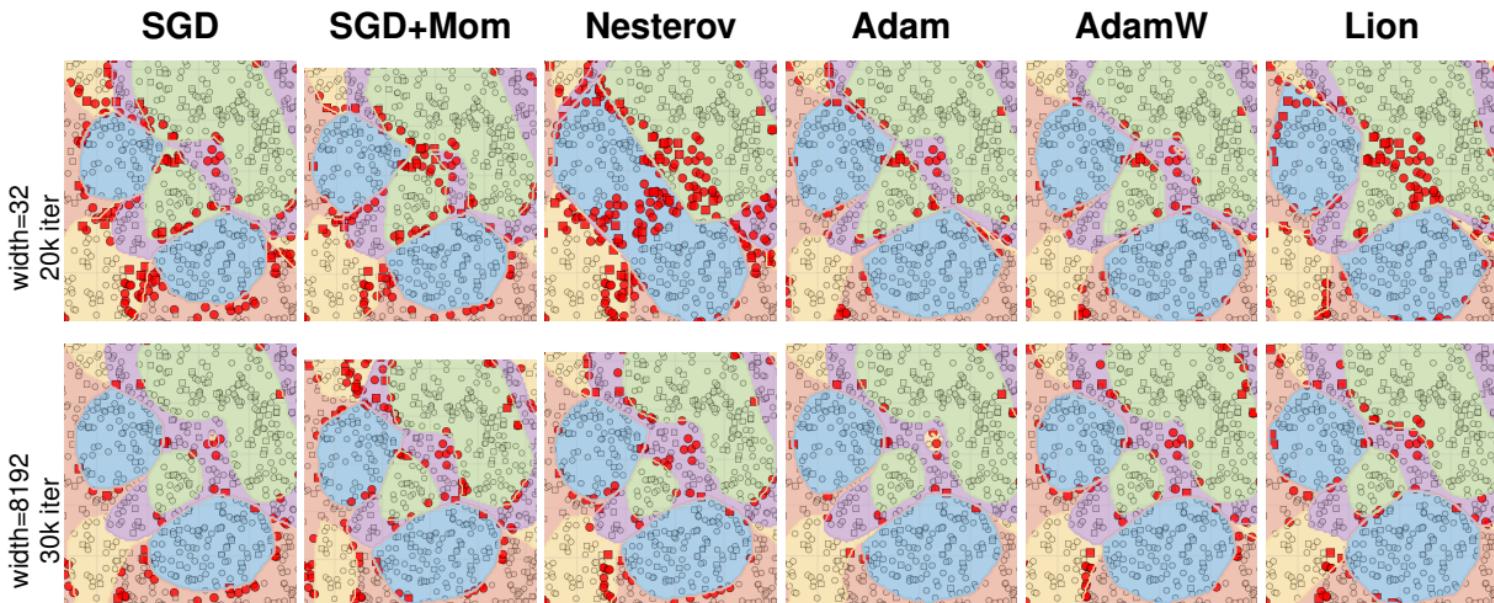
Method	Memory	HP Sensitivity	Best For
SGD	$O(p)$	High	Vision + tuning
SGD + Momentum	$O(2p)$	High	Vision (standard)
Adam/AdamW	$O(2p)$	Low	NLP, default
Lion	$O(p)$	Low	Large-scale, memory

Practical advice: Start with Adam, optimize if needed

adaptive methods trade memory for robustness – start with Adam

Numerical Comparison

Optimizer Comparison: Decision Boundaries



Lazy regime produces smoother boundaries; Adam/AdamW best overall

Optimizer Comparison: Numerical Results

Method	Small (width=32)				Lazy (width=8192)			
	Loss		Accuracy		Loss		Accuracy	
	Train	Test	Train	Test	Train	Test	Train	Test
SGD	0.51	0.50	82.9%	82.5%	0.24	0.42	91.6%	86.0%
SGD+Momentum	0.41	0.48	85.6%	79.5%	0.58	0.84	83.6%	85.5%
SGD+Nesterov	0.89	1.04	68.3%	63.5%	0.24	0.29	90.9%	89.5%
Adam	0.21	0.44	92.9%	90.0%	0.08	0.29	97.2%	91.5%
AdamW	0.13	0.29	95.0%	92.0%	0.24	0.36	90.2%	86.5%
Lion	0.41	0.70	85.6%	81.5%	0.34	0.41	91.4%	85.0%

Key observations:

- ▶ **Small regime:** AdamW best (92% test), Nesterov unstable (63.5%)
- ▶ **Lazy regime:** Adam best (91.5% test), Nesterov recovers (89.5%)
- ▶ Momentum can hurt in small networks but helps in lazy regime

Optimizer choice interacts with network architecture!

Adam Vector Field Theory

Beyond Gaussian Noise: Lévy-Driven Dynamics

Recall from Lecture 4: CLT gives Gaussian noise approximation

$$\hat{g}_S(\theta) \approx \nabla \mathcal{L}(\theta) + \frac{1}{\sqrt{S}} \Delta g, \quad \Delta g \sim \mathcal{N}(0, \Sigma(\theta))$$

Empirical reality [Simsekli et al., 2019]:

- ▶ Gradient noise often exhibits **heavy tails**
- ▶ Characterized by **symmetric α -stable** ($S\alpha S$) distributions
- ▶ Tail index $\alpha \in (0, 2]$: $p(x) \sim |x|^{-(1+\alpha)}$ for large $|x|$
- ▶ $\alpha = 2 \Rightarrow$ Gaussian (CLT special case)
- ▶ $\alpha < 2 \Rightarrow$ Heavy tails, infinite variance

Lévy-driven SDE for SGD:

$$d\theta_t = -\nabla \mathcal{L}(\theta_t) dt + \epsilon \Sigma_t dL_t, \quad L_t \sim S\alpha S$$

where L_t is a **Lévy motion** with stationary, independent increments.

heavy-tailed noise enables “big jumps” to escape sharp minima

The Adam Vector Field: Mathematical Derivation

Continuous-time limit of Adam yields coupled SDE system:

$$\begin{aligned} d\theta_t &= \mathbf{V}_{\text{Adam}}(\theta_t) dt + \epsilon Q_t^{-1} \Sigma_t dL_t \\ dm_t &= \beta_1 (\nabla \mathcal{L}(\theta_t) - m_t) dt \\ dv_t &= \beta_2 ([\nabla \mathcal{L}(\theta_t)]^2 - v_t) dt \end{aligned}$$

The Adam vector field (deterministic drift):

$$\boxed{\mathbf{V}_{\text{Adam}}(\theta_t) = -\mu_t Q_t^{-1} m_t}$$

Components:

- ▶ $Q_t = \text{diag}(\sqrt{\omega_t v_t + \epsilon})$ (adaptive scaling matrix)
- ▶ $\mu_t = 1/(1 - e^{-\beta_1 t})$ (first moment bias correction)
- ▶ $\omega_t = 1/(1 - e^{-\beta_2 t})$ (second moment bias correction)

Key insight: Adam's fixed points satisfy $\mathbf{V}_{\text{Adam}}(\theta^*) = 0$, **not** $\nabla \mathcal{L}(\theta^*) = 0$!

take away: Adam converges to zeros of its vector field, not the gradient

Why Adam Dampens Noise: Generalization Implications

How Adam modifies the noise structure:

- ▶ $Q_t^{-1} = \text{diag}(1/\sqrt{\omega_t v_t} + \epsilon)$ scales noise inversely to gradient magnitude
- ▶ Large gradients \Rightarrow small effective noise in that coordinate
- ▶ **Effect:** Dampens heavy-tailed fluctuations \Rightarrow **lighter tails** (larger α)

Escape time analysis:

Property	SGD	Adam
Noise tail index α	Heavy ($\alpha < 2$)	Lighter ($\alpha \rightarrow 2$)
Anisotropic structure	Preserved	Diminished
Escape time Γ	Smaller	Larger

Consequence for generalization:

- ▶ SGD escapes sharp minima **faster** \Rightarrow finds flatter basins
- ▶ Adam stays longer in sharp minima \Rightarrow may converge to sharper solutions

Adam's noise dampening explains generalization gap on vision

Reconciling Theory with Practice

If Adam finds sharper minima, why does it work so well?

Domain-dependent effects:

Vision/CNNs: Sharp vs flat strongly correlates with generalization

→ SGD often preferred; generalization gap observed

NLP/Transformers: Sparse gradients, different loss landscape

→ Adam's coordinate-wise adaptation is beneficial

→ Embedding layers have naturally sparse updates

Practical mitigation strategies:

- ▶ **AdamW:** Decoupled weight decay restores some regularization
- ▶ **Learning rate warmup:** Allows initial exploration before adaptation
- ▶ **Lower β_2 :** Less aggressive smoothing, more noise preserved

Open questions:

- ▶ Precise characterization of Adam's implicit regularization
- ▶ When does heavy-tail analysis vs. Gaussian SDE apply?

Efficient Second-Order Methods

Classical Preconditioning Perspective

Preconditioned gradient descent:

$$\theta_{t+1} = \theta_t - \eta \mathbf{M}^{-1} \nabla L(\theta_t)$$

where $\mathbf{M} \succ 0$ is a preconditioner matrix

Benefits of preconditioning:

- ▶ Rescales search directions to account for curvature
- ▶ Improves conditioning: transforms ill-conditioned \rightarrow well-conditioned
- ▶ Faster convergence: Newton converges in 1 step for quadratics

Classical choices:

- ▶ **Diagonal:** $\mathbf{M} = \text{diag}(\nabla^2 L) \rightarrow$ cheap but limited
- ▶ **Gauss-Newton:** $\mathbf{M} = \frac{1}{N} \sum_{i=1}^N \nabla^2 \mathbf{J}_i \mathbf{H}_i \mathbf{J}_i^\top \rightarrow$ effective but $O(p^2)$ memory
- ▶ **Fisher:** $\mathbf{M} = \mathbf{F}(\theta) = \frac{1}{N} \sum_{i=1}^N \nabla^2 \mathbf{J}_i \mathbf{J}_i^\top \rightarrow$ natural gradient

preconditioning accelerates optimization via curvature information

Second-Order Methods: An Outlook

Why study second-order methods?

- ▶ **Mathematical elegance:** Natural gradient, information geometry
- ▶ **Theoretical insights:** Understanding curvature structure
- ▶ **Specialized applications:** Small networks, scientific computing

Current status:

- ▶ **Not mainstream:** Adam/AdamW dominate in practice
- ▶ **Implementation complexity:** Requires architecture-specific code
- ▶ **Computational overhead:** $O(n^3)$ per layer adds up
- ▶ **Niche success:** Large-batch training, small models

Our approach:

- ▶ Explain **mathematical ideas** (natural gradient, Kronecker structure)
- ▶ Show **what's possible** (K-FAC worked example)
- ▶ Understand **why not mainstream** (computational cost vs. benefit)

second-order methods are effective but not (yet) practical at scale

Natural Gradient Descent

Motivation Amari 1998: Parameterization-invariant optimization

Fisher information matrix: Measures parameter space curvature

$$\mathbf{F}(\theta) = \mathbb{E}_{x,y} [\nabla_{\theta} \log p(y|x, \theta) \nabla_{\theta} \log p(y|x, \theta)^T]$$

Natural gradient: Steepest descent in Fisher metric

$$\theta_{t+1} = \theta_t - \eta \mathbf{F}(\theta_t)^{-1} \nabla L(\theta_t)$$

Properties:

- ▶ Parameterization-invariant: reparameterizing doesn't change trajectory
- ▶ Accounts for parameter correlations
- ▶ Faster convergence in function space

The problem: Same infeasibility as Hessian

- ▶ Fisher matrix: $O(p^2)$ memory
- ▶ Inversion: $O(p^3)$ computation
- ▶ **Need structured approximations!**

natural gradient is ideal but needs approximation

K-FAC: Kronecker-Factored Approximation

K-FAC = Kronecker-Factored Approximate Curvature Martens and Grosse 2015

Key insight: Exploit neural network **layer structure**

For one layer: $h^{(\ell+1)} = \sigma(\mathbf{W}^{(\ell)}h^{(\ell)} + b^{(\ell)})$

- ▶ Weight matrix: $\mathbf{W}^{(\ell)} \in \mathbb{R}^{n_{\text{out}} \times n_{\text{in}}}$
- ▶ Fisher block for this layer: $\mathbf{F}_W \in \mathbb{R}^{(n_{\text{out}} \cdot n_{\text{in}}) \times (n_{\text{out}} \cdot n_{\text{in}})}$

K-FAC approximation: Factor Fisher block as Kronecker product

$$\mathbf{F}_W \approx \mathbf{A} \otimes \mathbf{S}$$

where:

- ▶ $\mathbf{A} = \mathbb{E}[hh^T] \in \mathbb{R}^{n_{\text{in}} \times n_{\text{in}}}$: Activation correlation
- ▶ $\mathbf{S} = \mathbb{E}[\delta\delta^T] \in \mathbb{R}^{n_{\text{out}} \times n_{\text{out}}}$: Error correlation

Memory savings:

- ▶ Full block: $O((n_{\text{in}} \cdot n_{\text{out}})^2) \rightarrow$ K-FAC: $O(n_{\text{in}}^2 + n_{\text{out}}^2)$

Kronecker factorization exploits layer structure for massive savings

K-FAC: Why Not Mainstream?

Computational cost analysis:

- ▶ Forward-backward pass: $O(p)$ (same as Adam)
- ▶ Accumulate \mathbf{A} , \mathbf{S} : $O(n^2)$ per layer per step
- ▶ Invert factors: $O(n^3)$ per layer (every 10-100 steps)
- ▶ **Example:** Transformer with 1024-dim layers \rightarrow 1B FLOPs/inversion

Empirical benefits of K-FAC:

- ▶ **Large-batch regime:** Better curvature estimates (batch ≥ 512)
- ▶ **Small-medium networks:** Overhead manageable ($n \leq 1024$)
- ▶ **Fully-connected or Conv layers:** Kronecker structure exact
- ▶ **Wall-clock matters:** Willing to pay per-iteration cost for fewer iterations

Why not mainstream:

- ▶ **Memory:** $O(\sum n_\ell^2)$ overhead significant for wide networks
- ▶ **Implementation complexity:** Architecture-specific code needed
- ▶ **Attention mechanisms:** Kronecker approximation less natural
- ▶ **Cost-benefit:** Adam improvements usually sufficient

K-FAC effective in specialized settings, not general-purpose

Trilogy Synthesis

The Optimization Trilogy: Summary

Lecture 3: Foundations

- ▶ SA vs SAA framework for stochastic optimization
- ▶ Backpropagation enables $O(p)$ gradient computation
- ▶ Second-order methods infeasible: $O(p^2)$ memory, $O(p^3)$ computation
- ▶ SGD as prototype: simple, scalable, surprisingly effective

Lecture 4: Why SGD Works

- ▶ Convergence theory: stationary points, not global minima
- ▶ Implicit regularization: early stopping, minimum norm, batch size
- ▶ Continuous perspectives: gradient flow, Langevin, edge of stability
- ▶ Landscape structure: over-parametrization creates benign landscapes

Lecture 5: Efficient Methods

- ▶ Momentum: $O(p)$ memory for $\sqrt{\kappa}$ speedup
- ▶ Adaptive methods: Adam/Lion trade $O(2p)$ for robustness
- ▶ K-FAC: structured second-order approximation
- ▶ Computational comparison: optimizer choice depends on constraints

trilogy theme: foundations → understanding → accelerations

Key Insights Across Three Lectures

1. Why neural network optimization works:

- ▶ Over-parametrization ($p \gg n$) creates favorable landscape
- ▶ SGD noise helps: escapes saddles, prefers flat minima
- ▶ Mode connectivity: good solutions are connected

2. Optimization is more than minimization

- ▶ *Which* minimum matters for generalization
- ▶ SGD implicitly regularizes: early stopping, flatness bias
- ▶ Algorithm choice affects solution quality, not just speed

3. Momentum vs. adaptive: different mechanisms

- ▶ **Momentum**: Numerical acceleration via ODE discretization
- ▶ **Adaptive**: Statistical diagonal preconditioning
- ▶ **Complementary**: Adam combines both (momentum + adaptive rates)

4. Trade-offs are fundamental:

- ▶ Memory vs robustness: Adam ($O(2p)$) vs SGD ($O(p)$)
- ▶ Compute vs iterations: K-FAC (expensive) vs SGD (cheap)
- ▶ Tuning vs convenience: tuned SGD vs out-of-box Adam

References |

- Amari, S.-I. (1998). "Natural Gradient Works Efficiently in Learning". In: *Neural Computation* 10.2, pp. 251–276.
- Chen, X., C. Liang, D. Huang, E. Real, K. Wang, Y. Liu, H. Pham, X. Dong, T. Luong, C.-J. Hsieh, Y. Lu, and Q. V. Le (2023). "Symbolic Discovery of Optimization Algorithms". In: *arXiv preprint arXiv:2302.06675*.
- Duchi, J., E. Hazan, and Y. Singer (2011). "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization". In: *Journal of Machine Learning Research* 12, pp. 2121–2159.
- Kingma, D. P. and J. Ba (2015). "Adam: A Method for Stochastic Optimization". In: *arXiv preprint arXiv:1412.6980*.
- Loshchilov, I. and F. Hutter (2019). "Decoupled Weight Decay Regularization". In: *International Conference on Learning Representations (ICLR)*.
- Martens, J. and R. Grosse (2015). "Optimizing Neural Networks with Kronecker-Factored Approximate Curvature". In: *International Conference on Machine Learning (ICML)*, pp. 2408–2417.

References II

- Nesterov, Yurii E. (1983). “A Method for Solving the Convex Programming Problem with Convergence Rate $O(1/k^2)$ ”. In: *Doklady Akademii Nauk SSSR* 269.3, pp. 543–547.
- Polyak, Boris T. (1964). “Some Methods of Speeding Up the Convergence of Iteration Methods”. In: *USSR Computational Mathematics and Mathematical Physics* 4.5, pp. 1–17.
- Tieleman, T. and G. Hinton (2012). *Lecture 6.5-RMSProp: Divide the Gradient by a Running Average of Its Recent Magnitude*. COURSERA: Neural Networks for Machine Learning.