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Reading List
Historical Context: Adaptive methods and structured second-order approximations
can accelerate neural network training but generalization remains a challenge.

Key Readings:
1. Kingma and Ba (2015) – Adam: A Method for Stochastic Optimization. ICLR

The modern standard adaptive optimizer

2. Loshchilov and Hutter (2019) – Decoupled Weight Decay Regularization. ICLR
AdamW: fixing weight decay in Adam

3. Chen et al. (2023) – Symbolic Discovery of Optimization Algorithms. NeurIPS
Lion: evolutionary-discovered sign-based optimizer

4. Amari (1998) – Natural Gradient Works Efficiently in Learning. Neural Comp.
Parameterization-invariant optimization

5. Martens and Grosse (2015) – K-FAC: Kronecker-Factored Approximate
Curvature. ICML
Practical second-order methods

Lecture Outline: Motivation→ Momentum→ Adam/Lion→ K-FAC
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Connection to Lecture 4

What we established in Lecture 4:
▶ SGD converges to stationary points (theory)
▶ Implicit regularization: early stopping, minimum norm, flatness preference
▶ Continuous-time view: Langevin dynamics, temperature T ∝ η/b
▶ Over-parametrization: NTK and mean field regime create expressive networks

Key conclusion: Lazy regime works reliably!
▶ SGD in lazy regime performs comparably to Gauss-Newton (Lecture 3)
▶ Now we understand why: benign landscapes + implicit regularization

Today’s question:

Can we make optimization more efficient, avoid hyperparameters
without hurting generalization?
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SGD and GN Pain Points

1. Learning rate sensitivity:
▶ Too small: slow convergence, limited exploration
▶ Too large: divergence or oscillation
▶ No guidelines: need careful tuning for each problem

2. Ill-conditioning:
▶ Loss landscape has different curvatures in different directions
▶ Single learning rate can’t optimize all directions equally
▶ Condition number κ = λmax/λmin hurts convergence

3. No momentum / variance reduction:
▶ Each step independent of history
▶ Cannot accelerate in consistent gradient directions
▶ Cannot slow down in oscillatory directions

Gauss-Newton solved these via curvature... but is infeasible for large NNs!
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Roadmap: Efficient SGD Variants

1. Momentum Methods
▶ Heavy ball method: accumulate velocity
▶ Nesterov acceleration: look-ahead gradient
▶ Cost: O(p) memory (one extra vector)

2. Adaptive Gradient Methods
▶ Per-parameter learning rates from gradient history
▶ Adam, AdamW, Lion
▶ Cost: O(2p) memory (two moment vectors)

3. Outlook: Efficient Second-Order
▶ Approximate curvature with structure
▶ K-FAC: Kronecker-factored approximation
▶ Cost: O(p +

∑
n2
ℓ) memory

trade memory for faster convergence and robustness
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Momentum Methods
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Heavy Ball Method: Adding Memory
Motivation: Ball rolling down a hill accumulates velocity

SGD with Momentum Polyak 1964:

vt+1 = βvt +∇L(θt) (accumulate velocity)
θt+1 = θt − ηvt+1 (update parameters)

where β ∈ [0, 1) is momentum coefficient (typically β = 0.9)

Key properties:
▶ Acceleration: Builds speed in consistent gradient directions
▶ Damping: Cancels oscillations in inconsistent directions
▶ Memory: O(p) extra storage for velocity vector

Convergence improvement: Proven for convex quadratics:
▶ GD: iterations ∝ κ (condition number)
▶ Momentum: iterations ∝

√
κ (quadratic speedup!)

momentum trades O(p) memory for
√
κ speedup
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Nesterov Accelerated Gradient
Key idea Nesterov 1983: Compute gradient at look-ahead position

θ̃t = θt + β(θt − θt−1) (look ahead)

θt+1 = θ̃t − η∇L(θ̃t) (gradient at look-ahead)

Intuition:
▶ Heavy ball: gradient at current position, then add momentum
▶ Nesterov: first apply momentum, then compute gradient
▶ “Correct” the momentum direction before overshooting

Convergence:
▶ Achieves optimal O(1/t2) rate for smooth convex functions
▶ Heavy ball: O(1/t) (worse by factor t)
▶ Provably optimal among first-order methods (with optimal β)

Nesterov’s look-ahead achieves optimal convergence rate
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Adaptive Gradient Methods
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The Adaptive Paradigm: Per-Parameter Learning Rates
Core idea: Adapt learning rate per parameter based on gradient history

θt+1 = θt − η diag(
√

vt + 10−8)−1gt

where vt accumulates information about gradient magnitude
Benefits:
▶ Robustness: Works across wider range of learning rates
▶ Sparse features: Larger updates to infrequent features
▶ Ill-conditioning: Automatically rescales for different curvatures

Connection to preconditioning:
▶ Adaptive methods = diagonal preconditioning
▶ Approximates diagonal of Fisher or empirical Hessian

Three generations:
1. AdaGrad Duchi, Hazan, and Singer 2011: Accumulate all gradients⇒ LR

decays too aggressively
2. RMSprop Tieleman and Hinton 2012: Exponential moving average⇒ fixes decay
3. Adam Kingma and Ba 2015: Add momentum + bias correction

adaptive methods trade O(2p) memory for robustness
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Adam: Three Design Principles
Adam = Adaptive Moment Estimation Kingma and Ba 2015

Principle 1: Momentum (first moment)
▶ Exponential moving average of gradients: mt = β1mt−1 + (1− β1)gt

▶ Smooths gradient estimates, accelerates in consistent directions
▶ Hyperparameter: β1 (typically 0.9)

Principle 2: Adaptive learning rates (second moment)
▶ Exponential moving average of squared gradients: vt = β2vt−1 + (1− β2)g2

t

▶ Scale learning rate inversely to typical gradient magnitude
▶ Hyperparameter: β2 (typically 0.999)

Principle 3: Bias correction
▶ Moving averages initialized at zero⇒ biased toward zero early
▶ Correct: m̂t = mt/(1− β t

1), v̂t = vt/(1− β t
2)

Adam = momentum + adaptive rates + bias correction
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Adam: Complete Algorithm

Hyperparameters: η = 10−3, β1 = 0.9, β2 = 0.999, ε = 10−8

Algorithm:
1. Initialize: m0 = 0, v0 = 0, t = 0
2. While not converged:

2.1 t← t + 1
2.2 gt ← ∇θL(θt−1) (gradient)
2.3 mt ← β1mt−1 + (1− β1)gt (first moment)
2.4 vt ← β2vt−1 + (1− β2)g2

t (second moment)
2.5 m̂t ← mt/(1− βt

1), v̂t ← vt/(1− βt
2) (bias correction)

2.6 θt ← θt−1 − η · m̂t/(
√

v̂t + ε) (update)

Memory cost: O(2p) vs O(p) for SGD

Defaults work remarkably well: Often used as-is without tuning
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AdamW: Decoupled Weight Decay
Problem with L2 regularization in Adam:
▶ Standard: Add λ∥θ∥2 to loss⇒ gradient includes 2λθ
▶ Adam adapts this regularization gradient like any other
▶ Issue: Adaptive scaling interferes with intended regularization strength

AdamW solution Loshchilov and Hutter 2019: Decouple weight decay from gradient

θt ← θt−1 − η ·
(

m̂t√
v̂t + ε

+ λθt−1

)
▶ Weight decay λθ applied after adaptive scaling
▶ Regularization strength independent of gradient magnitude

When to use AdamW:
▶ Any time you use weight decay (almost always)
▶ Default for Transformers and language models
▶ PyTorch: torch.optim.AdamW

use AdamW when weight decay is needed (i.e., almost always)
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Lion: Evolutionary Discovered Optimizer
Origin Chen et al. 2023: Discovered via AutoML (symbolic program search)

Algorithm: Sign-based update with momentum

ct = β1mt−1 + (1− β1)gt (interpolate)
θt = θt−1 − η · sign(ct) (sign-based update)

mt = β2mt−1 + (1− β2)gt (momentum for next step)

Key differences from Adam:
▶ Sign-based: Uses sign(ct) instead of scaled gradient
▶ Memory: O(p) instead of O(2p) (only one momentum vector)
▶ Scale invariance: Update magnitude independent of gradient scale

Typical hyperparameters:
▶ η = 10−4 (typically 10× smaller than Adam)
▶ β1 = 0.9, β2 = 0.99

Lion = sign-based updates + momentum, memory-efficient alternative
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When to Use Adam vs SGD vs Lion
Adam/AdamW advantages:
▶ Robustness: Works across wide LR

range
▶ Sparse features: NLP, embeddings
▶ Quick prototyping: Defaults work

SGD (with momentum) advantages:
▶ Vision tasks: Better final accuracy
▶ Well-tuned: Can outperform Adam
▶ Memory: O(p) vs O(2p)

Lion advantages:
▶ Memory-efficient: Same as SGD
▶ Large-scale: Competitive on big models
▶ Scale-invariant: Robust to gradient

magnitude

Empirical patterns:

Domain Typical Choice

NLP/Transformers AdamW

Vision/CNNs SGD + tuning

Transfer learning Adam

Large-scale LLMs AdamW or Lion

Memory-limited Lion

Theory-practice gaps:
▶ SGD generalizes better on vision:

Flatter minima?
▶ Adam optimal for sparse

gradients: Diagonal
preconditioning effective

▶ Why domain-dependent? Implicit
bias differences unclear

no universal winner – domain and constraints matterTitle Momentum Adaptive Numerics Theory Second-Order Σ References 15
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Adaptive Methods: Summary
Evolution:
▶ AdaGrad (2011): Accumulate gradients→ too aggressive decay
▶ RMSprop (2012): Exponential average→ fixes decay
▶ Adam (2015): + Momentum + bias correction→ dominant
▶ AdamW (2017): Decoupled weight decay→ better regularization
▶ Lion (2023): Sign-based→ memory-efficient alternative

Cost-benefit trade-off:

Method Memory HP Sensitivity Best For

SGD O(p) High Vision + tuning

SGD + Momentum O(2p) High Vision (standard)

Adam/AdamW O(2p) Low NLP, default

Lion O(p) Low Large-scale, memory

Practical advice: Start with Adam, optimize if needed

adaptive methods trade memory for robustness – start with Adam
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Numerical Comparison
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Optimizer Comparison: Decision Boundaries

SGD SGD+Mom Nesterov Adam AdamW Lion
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Lazy regime produces smoother boundaries; Adam/AdamW best overall
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Optimizer Comparison: Numerical Results
Small (width=32) Lazy (width=8192)

Method Loss Accuracy Loss Accuracy
Train Test Train Test Train Test Train Test

SGD 0.51 0.50 82.9% 82.5% 0.24 0.42 91.6% 86.0%
SGD+Momentum 0.41 0.48 85.6% 79.5% 0.58 0.84 83.6% 85.5%
SGD+Nesterov 0.89 1.04 68.3% 63.5% 0.24 0.29 90.9% 89.5%
Adam 0.21 0.44 92.9% 90.0% 0.08 0.29 97.2% 91.5%
AdamW 0.13 0.29 95.0% 92.0% 0.24 0.36 90.2% 86.5%
Lion 0.41 0.70 85.6% 81.5% 0.34 0.41 91.4% 85.0%

Key observations:

▶ Small regime: AdamW best (92% test), Nesterov unstable (63.5%)

▶ Lazy regime: Adam best (91.5% test), Nesterov recovers (89.5%)

▶ Momentum can hurt in small networks but helps in lazy regime

Optimizer choice interacts with network architecture!

Title Momentum Adaptive Numerics Theory Second-Order Σ References 19



lruthot@emory.edu Comp Math and AI @ Efficient Optimization

Adam Vector Field Theory
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Beyond Gaussian Noise: Lévy-Driven Dynamics
Recall from Lecture 4: CLT gives Gaussian noise approximation

ĝS(θ) ≈ ∇L(θ) +
1√
S
∆g, ∆g ∼ N (0,Σ(θ))

Empirical reality [Simsekli et al., 2019]:
▶ Gradient noise often exhibits heavy tails
▶ Characterized by symmetric α-stable (SαS) distributions
▶ Tail index α ∈ (0, 2]: p(x) ∼ |x|−(1+α) for large |x|
▶ α = 2⇒ Gaussian (CLT special case)
▶ α < 2⇒ Heavy tails, infinite variance

Lévy-driven SDE for SGD:

dθt = −∇L(θt) dt + ϵΣt dLt, Lt ∼ SαS

where Lt is a Lévy motion with stationary, independent increments.

heavy-tailed noise enables “big jumps” to escape sharp minima
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The Adam Vector Field: Mathematical Derivation
Continuous-time limit of Adam yields coupled SDE system:

dθt = VAdam(θt) dt + ϵQ−1
t Σt dLt

dmt = β1(∇L(θt)− mt) dt

dvt = β2([∇L(θt)]
2 − vt) dt

The Adam vector field (deterministic drift):

VAdam(θt) = −µtQ−1
t mt

Components:
▶ Qt = diag(

√
ωtvt + ϵ) (adaptive scaling matrix)

▶ µt = 1/(1− e−β1t) (first moment bias correction)
▶ ωt = 1/(1− e−β2t) (second moment bias correction)

Key insight: Adam’s fixed points satisfy VAdam(θ
∗) = 0, not ∇L(θ∗) = 0!

take away: Adam converges to zeros of its vector field, not the gradient
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Why Adam Dampens Noise: Generalization Implications
How Adam modifies the noise structure:
▶ Q−1

t = diag(1/
√
ωtvt + ϵ) scales noise inversely to gradient magnitude

▶ Large gradients⇒ small effective noise in that coordinate
▶ Effect: Dampens heavy-tailed fluctuations⇒ lighter tails (larger α)

Escape time analysis:

Property SGD Adam

Noise tail index α Heavy (α < 2) Lighter (α→ 2)

Anisotropic structure Preserved Diminished

Escape time Γ Smaller Larger

Consequence for generalization:
▶ SGD escapes sharp minima faster⇒ finds flatter basins
▶ Adam stays longer in sharp minima⇒ may converge to sharper solutions

Adam’s noise dampening explains generalization gap on vision
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Reconciling Theory with Practice
If Adam finds sharper minima, why does it work so well?

Domain-dependent effects:
Vision/CNNs: Sharp vs flat strongly correlates with generalization
→ SGD often preferred; generalization gap observed

NLP/Transformers: Sparse gradients, different loss landscape
→ Adam’s coordinate-wise adaptation is beneficial
→ Embedding layers have naturally sparse updates

Practical mitigation strategies:
▶ AdamW: Decoupled weight decay restores some regularization
▶ Learning rate warmup: Allows initial exploration before adaptation
▶ Lower β2: Less aggressive smoothing, more noise preserved

Open questions:
▶ Precise characterization of Adam’s implicit regularization
▶ When does heavy-tail analysis vs. Gaussian SDE apply?
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Efficient Second-Order Methods
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Classical Preconditioning Perspective
Preconditioned gradient descent:

θt+1 = θt − ηM−1∇L(θt)

where M ≻ 0 is a preconditioner matrix

Benefits of preconditioning:
▶ Rescales search directions to account for curvature
▶ Improves conditioning: transforms ill-conditioned→ well-conditioned
▶ Faster convergence: Newton converges in 1 step for quadratics

Classical choices:
▶ Diagonal: M = diag(∇2L)→ cheap but limited
▶ Gauss-Newton: M = 1

N

∑N
i=1∇2JiHiJ⊤

i → effective but O(p2) memory
▶ Fisher: M = F(θ) = 1

N

∑N
i=1∇2JiJ⊤

i → natural gradient

preconditioning accelerates optimization via curvature information
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Second-Order Methods: An Outlook
Why study second-order methods?
▶ Mathematical elegance: Natural gradient, information geometry
▶ Theoretical insights: Understanding curvature structure
▶ Specialized applications: Small networks, scientific computing

Current status:
▶ Not mainstream: Adam/AdamW dominate in practice
▶ Implementation complexity: Requires architecture-specific code
▶ Computational overhead: O(n3) per layer adds up
▶ Niche success: Large-batch training, small models

Our approach:
▶ Explain mathematical ideas (natural gradient, Kronecker structure)
▶ Show what’s possible (K-FAC worked example)
▶ Understand why not mainstream (computational cost vs. benefit)

second-order methods are effective but not (yet) practical at scale
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Natural Gradient Descent
Motivation Amari 1998: Parameterization-invariant optimization

Fisher information matrix: Measures parameter space curvature

F(θ) = Ex,y
[
∇θ log p(y|x, θ)∇θ log p(y|x, θ)T]

Natural gradient: Steepest descent in Fisher metric

θt+1 = θt − ηF(θt)
−1∇L(θt)

Properties:
▶ Parameterization-invariant: reparameterizing doesn’t change trajectory
▶ Accounts for parameter correlations
▶ Faster convergence in function space

The problem: Same infeasibility as Hessian
▶ Fisher matrix: O(p2) memory
▶ Inversion: O(p3) computation
▶ Need structured approximations!

natural gradient is ideal but needs approximation
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K-FAC: Kronecker-Factored Approximation
K-FAC = Kronecker-Factored Approximate Curvature Martens and Grosse 2015

Key insight: Exploit neural network layer structure

For one layer: h(ℓ+1) = σ(W(ℓ)h(ℓ) + b(ℓ))
▶ Weight matrix: W(ℓ) ∈ Rnout×nin

▶ Fisher block for this layer: FW ∈ R(nout·nin)×(nout·nin)

K-FAC approximation: Factor Fisher block as Kronecker product

FW ≈ A⊗ S

where:
▶ A = E[hhT ] ∈ Rnin×nin: Activation correlation
▶ S = E[δδT ] ∈ Rnout×nout: Error correlation

Memory savings:
▶ Full block: O((nin · nout)

2)→ K-FAC: O(n2
in + n2

out)

Kronecker factorization exploits layer structure for massive savings
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K-FAC: Why Not Mainstream?
Computational cost analysis:
▶ Forward-backward pass: O(p) (same as Adam)
▶ Accumulate A, S: O(n2) per layer per step
▶ Invert factors: O(n3) per layer (every 10-100 steps)
▶ Example: Transformer with 1024-dim layers→ 1B FLOPs/inversion

Empirical benefits of K-FAC:
▶ Large-batch regime: Better curvature estimates (batch ≥ 512)
▶ Small-medium networks: Overhead manageable (n ≤ 1024)
▶ Fully-connected or Conv layers: Kronecker structure exact
▶ Wall-clock matters: Willing to pay per-iteration cost for fewer iterations

Why not mainstream:
▶ Memory: O(

∑
n2
ℓ) overhead significant for wide networks

▶ Implementation complexity: Architecture-specific code needed
▶ Attention mechanisms: Kronecker approximation less natural
▶ Cost-benefit: Adam improvements usually sufficient

K-FAC effective in specialized settings, not general-purpose
Title Momentum Adaptive Numerics Theory Second-Order Σ References 30



lruthot@emory.edu Comp Math and AI @ Efficient Optimization

Trilogy Synthesis
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The Optimization Trilogy: Summary
Lecture 3: Foundations
▶ SA vs SAA framework for stochastic optimization
▶ Backpropagation enables O(p) gradient computation
▶ Second-order methods infeasible: O(p2) memory, O(p3) computation
▶ SGD as prototype: simple, scalable, surprisingly effective

Lecture 4: Why SGD Works
▶ Convergence theory: stationary points, not global minima
▶ Implicit regularization: early stopping, minimum norm, batch size
▶ Continuous perspectives: gradient flow, Langevin, edge of stability
▶ Landscape structure: over-parametrization creates benign landscapes

Lecture 5: Efficient Methods
▶ Momentum: O(p) memory for

√
κ speedup

▶ Adaptive methods: Adam/Lion trade O(2p) for robustness
▶ K-FAC: structured second-order approximation
▶ Computational comparison: optimizer choice depends on constraints

trilogy theme: foundations→ understanding→ accelerations
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Key Insights Across Three Lectures
1. Why neural network optimization works:
▶ Over-parametrization (p≫ n) creates favorable landscape
▶ SGD noise helps: escapes saddles, prefers flat minima
▶ Mode connectivity: good solutions are connected

2. Optimization is more than minimization
▶ Which minimum matters for generalization
▶ SGD implicitly regularizes: early stopping, flatness bias
▶ Algorithm choice affects solution quality, not just speed

3. Momentum vs. adaptive: different mechanisms
▶ Momentum: Numerical acceleration via ODE discretization
▶ Adaptive: Statistical diagonal preconditioning
▶ Complementary: Adam combines both (momentum + adaptive rates)

4. Trade-offs are fundamental:
▶ Memory vs robustness: Adam (O(2p)) vs SGD (O(p))
▶ Compute vs iterations: K-FAC (expensive) vs SGD (cheap)
▶ Tuning vs convenience: tuned SGD vs out-of-box Adam
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