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Reading List

Historical Context: Adaptive methods and structured second-order approximations
can accelerate neural network training but generalization remains a challenge.
Key Readings:

1. Kingma and Ba (2015) — Adam: A Method for Stochastic Optimization. /CLR

The modern standard adaptive optimizer

2. Loshchilov and Hutter (2019) — Decoupled Weight Decay Regularization. ICLR
AdamW: fixing weight decay in Adam

3. Chen et al. (2023) — Symbolic Discovery of Optimization Algorithms. NeurlPS

Lion: evolutionary-discovered sign-based optimizer

4. Amari (1998) — Natural Gradient Works Efficiently in Learning. Neural Comp.

Parameterization-invariant optimization

5. Martens and Grosse (2015) — K-FAC: Kronecker-Factored Approximate
Curvature. ICML

Practical second-order methods
Lecture Outline: Motivation — Momentum — Adam/Lion — K-FAC
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Connection to Lecture 4

What we established in Lecture 4:
» SGD converges to stationary points (theory)
» Implicit regularization: early stopping, minimum norm, flatness preference
» Continuous-time view: Langevin dynamics, temperature T o« n/b
» Over-parametrization: NTK and mean field regime create expressive networks

Key conclusion: Lazy regime works reliably!
» SGD in lazy regime performs comparably to Gauss-Newton (Lecture 3)
» Now we understand why: benign landscapes + implicit regularization

Today’s question:

Can we make optimization more efficient, avoid hyperparameters
without hurting generalization?
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SGD and GN Pain Points

1. Learning rate sensitivity:
» Too small: slow convergence, limited exploration
» Too large: divergence or oscillation
» No guidelines: need careful tuning for each problem
2. lll-conditioning:
> Loss landscape has different curvatures in different directions
> Single learning rate can’t optimize all directions equally
» Condition number x = Ayax/Amin hurts convergence
3. No momentum / variance reduction:

» Each step independent of history
» Cannot accelerate in consistent gradient directions
» Cannot slow down in oscillatory directions

Gauss-Newton solved these via curvature... but is infeasible for large NNs!
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Roadmap: Efficient SGD Variants

1. Momentum Methods
» Heavy ball method: accumulate velocity
» Nesterov acceleration: look-ahead gradient
» Cost: O(p) memory (one extra vector)

2. Adaptive Gradient Methods
» Per-parameter learning rates from gradient history
» Adam, AdamW, Lion
» Cost: O(2p) memory (two moment vectors)

3. Outlook: Efficient Second-Order
» Approximate curvature with structure
» K-FAC: Kronecker-factored approximation
» Cost: O(p + > n) memory

trade memory for faster convergence and robustness
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Momentum Methods
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Heavy Ball Method: Adding Memory
Motivation: Ball rolling down a hill accumulates velocity
SGD with Momentum Polyak 1964:
v = PBv, + VL(0,) (accumulate velocity)
0,1 =0, —nv,; (update parameters)
where g € [0, 1) is momentum coefficient (typically 5 = 0.9)

Key properties:
» Acceleration: Builds speed in consistent gradient directions
» Damping: Cancels oscillations in inconsistent directions
» Memory: O(p) extra storage for velocity vector

Convergence improvement: Proven for convex quadratics:
» GD: iterations « « (condition number)
» Momentum: iterations « /x (quadratic speedup!)

momentum trades O(p) memory for /x speedup
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Nesterov Accelerated Gradient
Key idea Nesterov 1983: Compute gradient at look-ahead position

6,=0,+ 30, —6,_,) (look ahead)
041 = 0, —nVL(6,) (gradient at look-ahead)

Intuition:
» Heavy ball: gradient at current position, then add momentum
» Nesterov: first apply momentum, then compute gradient
» “Correct” the momentum direction before overshooting

Convergence:
» Achieves optimal O(1/7*) rate for smooth convex functions
» Heavy ball: O(1/t) (worse by factor 1)
» Provably optimal among first-order methods (with optimal )

Nesterov’s look-ahead achieves optimal convergence rate
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Adaptive Gradient Methods
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The Adaptive Paradigm: Per-Parameter Learning Rates
Core idea: Adapt learning rate per parameter based on gradient history

01 =0, —n diag(\/vt + 10_8)_1&
where v, accumulates information about gradient magnitude

Benefits:
» Robustness: Works across wider range of learning rates
» Sparse features: Larger updates to infrequent features
» lll-conditioning: Automatically rescales for different curvatures
Connection to preconditioning:
» Adaptive methods = diagonal preconditioning
» Approximates diagonal of Fisher or empirical Hessian
Three generations:
1. AdaGrad Duchi, Hazan, and Singer 2011: Accumulate all gradients = LR
decays too aggressively
2. RMSprop Tieleman and Hinton 2012: Exponential moving average = fixes decay
3. Adam Kingma and Ba 2015: Add momentum + bias correction

adaptive methods trade O(2p) memory for robustness
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Adam: Three Design Principles
Adam = Adaptive Moment Estimation Kingma and Ba 2015

Principle 1: Momentum (first moment)
» Exponential moving average of gradients: m, = Sym,_; + (1 — §))g,
» Smooths gradient estimates, accelerates in consistent directions
» Hyperparameter: g; (typically 0.9)

Principle 2: Adaptive learning rates (second moment)
» Exponential moving average of squared gradients: v, = 3,v, | + (1 — 3,)g?
» Scale learning rate inversely to typical gradient magnitude
» Hyperparameter: 3, (typically 0.999)

Principle 3: Bias correction
» Moving averages initialized at zero = biased toward zero early
» Correct: m, =m,/(1 — 3!), v, =v,/(1 — ()

Adam = momentum + adaptive rates + bias correction
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Adam: Complete Algorithm

Hyperparameters: n = 1073, 5, = 0.9, 5, = 0.999, ¢ = 1078
Algorithm:
1. Initialize: my =0,vy =0, =0
2. While not converged:
21 t+1t+1
2.2 g+ VpL(0,—1) (gradient)
23 m; + Bim;_y + (1 — By)g;  (first moment)
2.4 v; + Bvi1 + (1 — B2)g>  (second moment)
25 m; < m/(1—- 7)), v. < v,/(1 —p%) (bias correction)
2.6 6, 6_1 —n-m/(vV,+¢) (update)

Memory cost: O(2p) vs O(p) for SGD
Defaults work remarkably well: Often used as-is without tuning
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AdamW: Decoupled Weight Decay

Problem with L, regularization in Adam:
» Standard: Add A||#||* to loss = gradient includes 210
» Adam adapts this regularization gradient like any other
» Issue: Adaptive scaling interferes with intended regularization strength

AdamW solution Loshchilov and Hutter 2019: Decouple weight decay from gradient

61 — 917] - + A9[ l)

<\/_+8

» Weight decay \0 applied after adaptive scaling
» Regularization strength independent of gradient magnitude

When to use AdamW:
» Any time you use weight decay (almost always)
» Default for Transformers and language models
» PyTorch: torch.optim.Adamw

use AdamW when weight decay is needed (i.e., almost always)
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Lion: Evolutionary Discovered Optimizer

Origin Chen et al. 2023: Discovered via AutoML (symbolic program search)

Algorithm: Sign-based update with momentum
¢ = pim;_ + (1 — Bi)g (interpolate)
0, =0,y —n-sign(c,) (sign-based update)
m, = fom, | + (1 — )g, (momentum for next step)

Key differences from Adam:

> Sign-based: Uses sign(c,) instead of scaled gradient

» Memory: O(p) instead of O(2p) (only one momentum vector)
» Scale invariance: Update magnitude independent of gradient scale

Typical hyperparameters:
» 7 = 10"* (typically 10x smaller than Adam)
> 5, =09, 5, =099

Lion = sign-based updates + momentum, memory-efficient alternative
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When to Use Adam vs SGD vs Lion

Adam/AdamW advantages: Empirical patterns:
» Robustness: Works across wide LR Domaln Typical Choice
range
g . NLP/Transformers AdamW
> Sparse features: NLP, embeddings Vision/CNNs SGD + tuning
» Quick prototyping: Defaults work Transfer learning ~ Adam
SGD (with momentum) advantages: Large-scale LLMs ~ AdamW or Lion

> Vision tasks: Better final accuracy Memory-limited  Lion

» Well-tuned: Can outperform Adam

Theory-practice gaps:
» Memory: O(p) vs O(2p) P gap

» SGD generalizes better on vision:
Lion advantages: Flatter minima?

» Memory-efficient: Same as SGD » Adam optimal for sparse

» Large-scale: Competitive on big models gradients: Diagonal

> Scale-invariant: Robust to gradient preconditioning effectlve? .
magnitude » Why domain-dependent? Implicit

bias differences unclear
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Adaptive Methods: Summary

Evolution:
» AdaGrad (2011): Accumulate gradients — too aggressive decay
» RMSprop (2012): Exponential average — fixes decay
» Adam (2015): + Momentum + bias correction — dominant
» AdamW (2017): Decoupled weight decay — better regularization
» Lion (2023): Sign-based — memory-efficient alternative

Cost-benefit trade-off:

Method Memory HP Sensitivity Best For

SGD Oo(p) High Vision + tuning
SGD + Momentum  O(2p) High Vision (standard)
Adam/AdamW 0(2p) Low NLP, default
Lion O(p) Low Large-scale, memory

Practical advice: Start with Adam, optimize if needed
adaptive methods trade memory for robustness — start with Adam
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Numerical Comparison
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Optimizer Comparison: Numerical Results

Small (width=32) Lazy (width=8192)
Method Loss Accuracy Loss Accuracy
Train | Test | Train | Test | Train | Test | Train | Test
SGD 0.51 | 0.50 | 82.9% | 82.5% || 0.24 | 0.42 | 91.6% | 86.0%

SGD+Momentum || 0.41 | 0.48 | 85.6% | 79.5% | 0.58 | 0.84 | 83.6% | 85.5%
SGD+Nesterov 0.89 | 1.04 | 68.3% | 63.5% || 0.24 | 0.29 | 90.9% | 89.5%

Adam 0.21 | 0.44 | 92.9% | 90.0% || 0.08 | 0.29 | 97.2% | 91.5%
AdamW 0.13 | 0.29 | 95.0% | 92.0% || 0.24 | 0.36 | 90.2% | 86.5%
Lion 0.41 | 0.70 | 85.6% | 81.5% || 0.34 | 0.41 | 91.4% | 85.0%

Key observations:
> Small regime: AdamW best (92% test), Nesterov unstable (63.5%)
» Lazy regime: Adam best (91.5% test), Nesterov recovers (89.5%)

» Momentum can hurt in small networks but helps in lazy regime

Optimizer choice interacts with network architecture!
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Adam Vector Field Theory
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Beyond Gaussian Noise: Lévy-Driven Dynamics

Recall from Lecture 4: CLT gives Gaussian noise approximation

25(0) ~ VL) + \%Ag, Ag ~ N(0,5(6))

Empirical reality [Simsekli et al., 2019]:
» Gradient noise often exhibits heavy tails
» Characterized by symmetric a-stable (SaS) distributions
» Tail index a € (0,2]:  p(x) ~ |x[~(*) for large |x|
» o =2 = Gaussian (CLT special case)
» o < 2 = Heavy tails, infinite variance

Lévy-driven SDE for SGD:
db, = =V L(0,)dt + ex,dL,, L, ~SaS
where L, is a Lévy motion with stationary, independent increments.
heavy-tailed noise enables “big jumps” to escape sharp minima
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The Adam Vector Field: Mathematical Derivation

Continuous-time limit of Adam yields coupled SDE system:

df, = Vagam(0,) dt + €Q; 'S, dL,
dm, = B,(VL(6,) — m,) dt
dv, = Bo([VLO,))> —v,) dt

The Adam vector field (deterministic drift):

VAdam(gz) = —,tht_lm,

Components:
» O, =diag(y/w,v; +€) (adaptive scaling matrix)
> 1, =1/(1—e )  (first moment bias correction)
> w,=1/(1—-e?") (second moment bias correction)

Key insight: Adam’s fixed points satisfy Vagam(0*) = 0, not V.L(6*) = 0!
take away: Adam converges to zeros of its vector field, not the gradient
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Why Adam Dampens Noise: Generalization Implications

How Adam modifies the noise structure:
» Q! =diag(1/\/wv; + €) scales noise inversely to gradient magnitude
» Large gradients = small effective noise in that coordinate
» Effect: Dampens heavy-tailed fluctuations = lighter tails (larger )

Escape time analysis:

Property SGD Adam
Noise tail index « Heavy (o < 2) | Lighter (a« — 2)
Anisotropic structure Preserved Diminished
Escape time I' Smaller Larger

Consequence for generalization:
» SGD escapes sharp minima faster = finds flatter basins
» Adam stays longer in sharp minima = may converge to sharper solutions

Adam’s noise dampening explains generalization gap on vision
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Reconciling Theory with Practice

If Adam finds sharper minima, why does it work so well?

Domain-dependent effects:
Vision/CNNs: Sharp vs flat strongly correlates with generalization
— SGD often preferred; generalization gap observed
NLP/Transformers: Sparse gradients, different loss landscape

— Adam’s coordinate-wise adaptation is beneficial
— Embedding layers have naturally sparse updates

Practical mitigation strategies:
» AdamW: Decoupled weight decay restores some regularization
» Learning rate warmup: Allows initial exploration before adaptation
» Lower j3,: Less aggressive smoothing, more noise preserved

Open questions:
» Precise characterization of Adam’s implicit regularization
» When does heavy-tail analysis vs. Gaussian SDE apply?
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Efficient Second-Order Methods
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Classical Preconditioning Perspective

Preconditioned gradient descent:
Op1 = 0, — nM_IVL(Qt)

where M > 0 is a preconditioner matrix

Benefits of preconditioning:
» Rescales search directions to account for curvature
» Improves conditioning: transforms ill-conditioned — well-conditioned
» Faster convergence: Newton converges in 1 step for quadratics

Classical choices:
» Diagonal: M = diag(V>*L) — cheap but limited
> Gauss-Newton: M = 1 >  V2JHJ — effective but O(p?) memory
> Fisher: M=F(0) = L > V2J,J| — natural gradient

preconditioning accelerates optimization via curvature information
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Second-Order Methods: An Outlook

Why study second-order methods?
» Mathematical elegance: Natural gradient, information geometry
» Theoretical insights: Understanding curvature structure
> Specialized applications: Small networks, scientific computing

Current status:
» Not mainstream: Adam/AdamW dominate in practice
» Implementation complexity: Requires architecture-specific code
» Computational overhead: O(»*) per layer adds up
» Niche success: Large-batch training, small models

Our approach:
» Explain mathematical ideas (natural gradient, Kronecker structure)
» Show what’s possible (K-FAC worked example)
» Understand why not mainstream (computational cost vs. benefit)

second-order methods are effective but not (yet) practical at scale
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Natural Gradient Descent
Motivation Amari 1998: Parameterization-invariant optimization
Fisher information matrix: Measures parameter space curvature

F(0) = E., [Vologp(ylx,0)Vslog p(ylx,0)"]
Natural gradient: Steepest descent in Fisher metric
9t+1 - 01‘ - T]F(Qt)71VL(9t)

Properties:
» Parameterization-invariant: reparameterizing doesn’t change trajectory
» Accounts for parameter correlations
» Faster convergence in function space

The problem: Same infeasibility as Hessian
» Fisher matrix: O(p?) memory
» Inversion: O(p*) computation
» Need structured approximations!

natural gradient is ideal but needs approximation
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K-FAC: Kronecker-Factored Approximation
K-FAC = Kronecker-Factored Approximate Curvature Martens and Grosse 2015
Key insight: Exploit neural network layer structure

For one layer: 1‘t1) = o(WO RO + p®)
> Weight matrix: W) ¢ Rroux7in
> Fisher block for this layer: Fy, € R{outin)x (nout1in)

K-FAC approximation: Factor Fisher block as Kronecker product

where:
> A = E[hh'] € R">*"n: Activation correlation
> S =E[§§7] € Rrouwxmout; Error correlation

Memory savings:
» Full block: O((nin - now)*) — K-FAC: O(nZ, + n2)

Kronecker factorization exploits layer structure for massive savings
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K-FAC: Why Not Mainstream?

Computational cost analysis:
» Forward-backward pass: O(p) (same as Adam)
» Accumulate A, S: O(n?) per layer per step
» Invert factors: O(n®) per layer (every 10-100 steps)
» Example: Transformer with 1024-dim layers — 1B FLOPs/inversion

Empirical benefits of K-FAC:
» Large-batch regime: Better curvature estimates (batch > 512)
» Small-medium networks: Overhead manageable (n < 1024)
» Fully-connected or Conv layers: Kronecker structure exact
» Wall-clock matters: Willing to pay per-iteration cost for fewer iterations

Why not mainstream:
» Memory: O(>_ n?) overhead significant for wide networks
» Implementation complexity: Architecture-specific code needed
» Attention mechanisms: Kronecker approximation less natural
» Cost-benefit: Adam improvements usually sufficient

K-FAC effective in specialized settings, not general-purpose
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Trilogy Synthesis
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The Optimization Trilogy: Summary

Lecture 3: Foundations
» SA vs SAA framework for stochastic optimization
» Backpropagation enables O(p) gradient computation
» Second-order methods infeasible: O(p?) memory, O(p?) computation
» SGD as prototype: simple, scalable, surprisingly effective

Lecture 4: Why SGD Works
» Convergence theory: stationary points, not global minima
» Implicit regularization: early stopping, minimum norm, batch size
» Continuous perspectives: gradient flow, Langevin, edge of stability
» Landscape structure: over-parametrization creates benign landscapes

Lecture 5: Efficient Methods
» Momentum: O(p) memory for \/x speedup
» Adaptive methods: Adam/Lion trade O(2p) for robustness
» K-FAC: structured second-order approximation
» Computational comparison: optimizer choice depends on constraints

trilogy theme: foundations — understanding — accelerations
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Key Insights Across Three Lectures

1. Why neural network optimization works:
» Over-parametrization (p > n) creates favorable landscape
» SGD noise helps: escapes saddles, prefers flat minima
» Mode connectivity: good solutions are connected

2. Optimization is more than minimization
» Which minimum matters for generalization
» SGD implicitly regularizes: early stopping, flatness bias
» Algorithm choice affects solution quality, not just speed

3. Momentum vs. adaptive: different mechanisms
» Momentum: Numerical acceleration via ODE discretization
» Adaptive: Statistical diagonal preconditioning
» Complementary: Adam combines both (momentum + adaptive rates)

4. Trade-offs are fundamental:
» Memory vs robustness: Adam (O(2p)) vs SGD (O(p))
» Compute vs iterations: K-FAC (expensive) vs SGD (cheap)
» Tuning vs convenience: tuned SGD vs out-of-box Adam
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