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Reading List

Historical Context: Generative modeling has evolved from statistical density
estimation and graphical models through variational methods and adversarial training
to modern diffusion- and flow-based approaches.

Key Readings:

1. Chen et al. (2018) — Neural Ordinary Differential Equations. NeurlPS
Continuous-time neural networks foundation.

2. Benamou and Brenier (2000) — Computational Fluid Mechanics Solution to
Monge-Kantorovich. Numer. Math.
Dynamic optimal transport formulation.

3. Onken et al. (2021) — Optimal Transport Regularization for Continuous
Normalizing Flows. NeurlPS
Penalizing kinetic energy of trajectories to obtain uniqueness and improve efficiency.

4. Lipman et al. (2023) — Flow Matching for Generative Modeling. ICLR

Supervised learning objective for continuous normalizing flows.

5. Song et al. (2021) — Score-Based Generative Modeling via SDEs. ICLR

Unifying framework for diffusion via Fokker-Planck.

Lecture Outline: CNF — OT — Flow Matching — Score-Based Diffusion
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Generative Modeling as Distribution Matching

Mathematical Framework

» Goal: Learn generator g, : R? — R”
that transforms latent Z to match
data X

» Challenges:

> n typically large (high-dimensional)
> X complicated (multimodal, disjoint
support)

» Core Problem: Match distributions

'How to match?

X

%%

Peo(2)(X) ~ pa(x)

» Today’s focus: Distribution
Matching with PDEs

generative modeling = matching high-dimensional distributions
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Classical Generative Approaches

Normalizing Flows
> Invertible mapping x = gy(z) with tractable change of variables
» Challenge: Log-determinant expensive, architectural constraints
log po(x) = log p:(g5 ' (x)) + log | det J,-1 ()]

Variational Autoencoders (VAES)
» Latent variable model with encoder-decoder structure
» Challenge: Blurry samples, mode collapse
Lvae = Ey, (v [log p(x]2)] — Dri(q,(2lx)[|p(2))

Generative Adversarial Networks (GANSs)
» Adversarial min-max game between generator g, and discriminator d,,

» Challenge: Training instability, no tractable density

min max E, log d,.(x)] + E[log(1 — d,.(g6(2)))]

today we focus on continuous-time models with PDEs

»

FM
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Today: PDE Perspective of Generative Modeling

9 9 (t
SV (o) =0, po=pa %*V'@””:%Ap” o= px
\_/
\’:‘/
:
Roadmap time log(time)

1. Continuous Normalizing Flows: Method of characteristics

2. Optimal Transport: Penalize transport costs to accelerate training/sampling
3. Flow matching: Even faster training by avoiding time integration

4. Diffusion: Stochastic alternative via Fokker-Planck

central theme: derive state-of-the-art generative Al models via simple PDEs

CNF

»
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Continuous Normalizing Flows
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From Continuity Equation to Method of Characteristics

— +V-(pv) =0, te€(0,1], po=px

Method of Characteristics

. - - . . . \/
» Define characteristic curves (particle trajectories): W
dx :
I =vi(x,1), x(0) ~px —
t —
. . time
» Along these curves (log density evolution):
dlo x(t
gZzt( W) _ _v.,

Key Insight
» PDE (continuity equation) < System of ODEs (particle trajectories)
» If particles follow ODEs, density automatically satisfies PDE!

CNF Idea: Parameterize velocity field v, as neural network vy(z, 1)

PDE transport = Method of characteristic = Neural ODE

oT FM

»
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CNF Training
Neural ODE
» Velocity field: % = vy(x(t), 1) with x(0) ~ po

» Advantage: Invertible and tractable log-density for any reasonable v,
» Density p; satisfies continuity equation automatically (method of characteristics)

Likelihood Computation (integrate instantaneous change of variables from Slide 5)
1
log pe(x) = log po(x(1)) + / V - vg(x(2),t)dt
0

Training
» Maximize E..,, [log ps(x)] (maximum likelihood)
» Requirements: ODE solve + trace computation at every training step

Sampling: Draw z(1) ~ pz, solve ODE from ¢ = 1 to t = 0 with vy(z, 7)

elegant theory, but ODE solving + trace at every step

»

FM
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CNF Limitations

Computational Bottlenecks
1. Trace computation: O(n) per evaluation (or high-variance stochastic)
2. ODE solving: Many function evaluations needed for adaptive time-stepping
3. Training time: Significantly slower than standard architectures

CNF Problem is Under-Determined
» Only map matters, no control over trajectory shape
» Maximum likelihood # minimize path energy
» Can produce complex, curved, high-energy paths
» More function evaluations needed in training and sampling

Scale Challenge
» Doesn’t scale well to high-dimensional imaging applications
» Both trace and ODE bottlenecks compound
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Regularizing CNF with Optimal Transport

Idea: Add kinetic energy penalty to MLE loss with trade-off parameter «

Corone(6) = Byl oepa(a)] + 55 | [ Inteto) 0Pl

Variational Perspective via Benamou-Brenier

1
e 1
minimize  £(p, v;) / / SIn (o) Pou() dedt + AD(p1, p)
0

. )
subject to % +V - (pv:) =0, po=px

Structure from Transport Costs (when optimal)
» Optimality condition: v, = —V®, (conservative), V - v, = —A®,
» Value function ®, satisfies Hamilton-Jacobi-Bellman equation
» Key insight: Transport cost — structure — simplified computation
» Note: CNF can be extended to mean field games

CNF

»

FM
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OT-Flow - Learning the Value Function

Idea: Directly learn the value function ® to exploit gradient structure
Training Objective (simplified from OT-Flow formulation)
Given samples xi, ..., xy ~ px, learn ®y(x, t) such that:

» Velocity: v = —V, Py (conservative by construction)

» Maximize likelihood w.r.t. standard normal p; = N (0,1)

» Add penalty terms to enforce Hamilton-Jacobi-Bellman equation

Key Computational Advantage
» Divergence: V - v = —A®d, (Laplacian)
» Can compute A®, directly with O(m?n) operations (where m = network width)
» Enables efficient likelihood computation during training

What OT-Flow Achieves
» Theoretical: Unique solution, straighter paths (minimal kinetic energy)
» Computational: Explicit Laplacian, fewer function evaluations
» Sampling: Can use fewer time steps than vanilla CNF

Intro CNF oT FM Diffusion b)) References
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OT-Flow - Benefits and Limitations

,

time time
Benefits Over Vanilla CNF Why Not Used for Imaging?
Theoretical:

MLE Framework Limitations:
» time integration in training
» Likelihood computation: expensive

» Unique solution (OT map)
» Min kinetic energy — straighter paths

Computational: and unstable (manifold hypothesis)
> Explicit Laplacian: V -v = —A® Next: Flow matching and diffusion
> More sampling efficient > no time integration in training
» Fewer steps than vanilla CNF » simpler, faster training, SOTA

sample quality
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Flow Matching

FM
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Key ldea: Feasible Paths via Superposition

0
§+v (ptvt)zov Po =Px, P1L=PpPz

Special Case: Two Dirac Deltas

For point pair px = d(xo) and pz = 6(x;), OT map is
» Conditional path: v,(xp, x1) = (1 — £)x0 + tx,
» Conditional density: p,(-|xp, x1) = 0(x — ¥,(x0, 1))
> Conditional velocity: u,(x|xo, x1) = % = x; — x

Superposition via Linearity

Sample x, ~ px and x; ~ pz independently.

By linearity of the PDE, the marginal density is:

o) = / 5(x — (30, 1) )P (o) z (1) o oy = B[40, 1)

This gives a feasible probability path!

Question: How do we get the marginal velocity v,?
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From Conditional to Marginal Velocity

For each (xo, x;) the conditional density and conditional velocity satisfy
Ip:(x|x0, x1)

ot
Step 1: Take expectation over (xo,x;) ~ px X pz
/ 3pt(x|x0,x1)

ot
Step 2: Interchange differentiation and integration

0
By [ / P (x]x0, x1)px (x0)pz (x1)dxodx,

+ V- (pe(x]xo, x1)u, (x|x0, x1)) = O

pa(x0)pz(x1)dxodx; + /V - (e (x|x0, x1 ) us (x|x0, 1) )p v (X0)p 2 (x1 ) dxodx; = 0

+V- {/ pe(x|x0, x1) 1ty (x|x0, X1 )P (x0)pz (x1 )dxodx; | =0

Step 3: Identify Coefficients. Thisis 2 + V - (p,) = 0 with:

[ ui(x|x0, x1) pe(x|x0, X1 )p e (x0)p 2 (x1 ) dxodx
vi(x) =
I pi(xlxo, x1)pa (x0)p 2 (x1 ) dxodixy

marginal velocity is weighted average of conditional velocities
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Conditional Expectation Interpretation

From Integral to Conditional Expectation
The marginal velocity can be written as:

fu,(x|x0,xl)pt(x|x0,xl)p(xo,xl)dxodxl
| pe(x|x0, x1)p (x50, X1)dxodx

vi(x) = = Efu; (x[xo, x1) | ¥1(x0,x1) = x|

where p(xo,x1) = px(x1)N (xo)
Problem: Computing this conditional expectation in high dimensions is intractable!

Reminder: Conditional Expectation

General form: E[Y | X = x] = ffypp((yybls)dciy

Here: Y = u,(x|x,x;), condition on ¢, (xo, x;) = x

next: How to compute this expectation?

»
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From Expectation to Function Approximation

Idea: Regression to Compute Expectation Use a neural network vy(x,¢) and
minimize:

Lcrm (9> = Et,xmxl[“v@(l/}t(xmxl)? t) - ul(x|x07x1)||2]
where u,(x|xp, x1) = x; — xo is known analytically!

Why This Works: A Simple Example
Two data points with the same x but different y values: (x,y;) and (x, y,)

Minimize: L(v) = [v(x) — yi[* + |[v(x) — y2|*
Optimality: 57t5 = 2(v(x) = y1) +2(v(x) =32) =0 = v*(x) = 3=

Key insight: v*(x) is the average of y-values at x = conditional expectation!
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Conditional Flow Matching Training

Training Objective

‘CCFM(Q) = Et,xoyxl [||v9(¢t<x07x1>7 t) - u,(x|x0,x1)|]2]

Training Procedure

1. Sample xo ~ px, x; ~ pz, t ~ U[0, 1]

2. Compute path location: ¢, = (1 — t)xo + 1x;

3. Compute target velocity: u, = x; — xo

4. Compute prediction: vy(v,, 1)

5. Minimize squared error with stochastic gradient descent
Advantages

» No ODE solve during training

» No trace computation

» Simple supervised learning (not adversarial or variational)
Sampling: Solve ODE with learned vy from ¢ = 1 to t = 0 (same as in CNF)

supervised learning on analytically known conditional velocities

= References
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Discussion - Flow Matching

The Flow Matching Recipe
1. Construct conditional flows from point pairs (Dirac deltas)
2. Use superposition via linearity — marginal densities
3. Fit neural network to match conditional velocities (supervised learning)

Computational Advantages
» Training: No ODE solves, no trace estimation — significantly faster than CNF
» Sampling: Linear interpolation — fewer function evaluations
» Simplicity: Convexity in v;, supervised learning

Trade-offs
» Produces feasible pairs (satisfies continuity equation) v/
» Does NOT minimize Benamou-Brenier kinetic energy (not optimal)
» Construction beats optimization in high dimensions!

State-of-the-Art: Stable Diffusion 3, Sora, AlphaFold 3

next: What about stochastic alternatives? (diffusion via Fokker-Planck)
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Score-Based Diffusion
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Stochastic Alternative - Fokker-Planck PDE

Idea: Use second-order PDE to map data to Gaussian
i _ g (1)
ot 2

Choose v, so that pr(x) converges to tractable distribution as T — oo (i.e., Gaussian).

-V (tht) +

V-(Vp), t>0, pyo=px

Example: Variance-Preserving Formulation (Mean Reversal)

w(x) = B0, £0) = B0
This gives variance-preserving dynamics: py — N(0,1)
Common choices for §(7):
> Linear: 5(¢) = fmin + (Bmax — Bmin) - /T
» Cosine: 5(¢) derived from «, = cos(nt/2T)
Our code: Buin = 0.1, Bmax =20, T =5

diffusion term causes asymptotic convergence to Gaussian

»

FM

Title Intro CNF oT Diffusion References




9] lruthot@emory.edu Comp Math and Al @ PDE for GenAl

Log Transform Reveals Score Function

The Score Function

si(x) := V,logp(x) =

Substituting Score into FP-PDE
Recall divergence-gradient form from previous slide. Use Vp, = p;s, to rewrite:

) (1
% =-V- {Vzpt_ gz( )th}

»

FM
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Score Matching - Conditional Construction

Idea (similar to flow matching): Start simple and use linearity of PDE!

Construction Strategy
Step 1: Pick xy ~ px, solve FP-PDE with Dirac initial condition py(x) = d(x — xo)

Solution is Gaussian (from variance-preserving SDE):
pi(x|x0) = N (x; auxo, o1
where «;, o, are known analytically for the variance-preserving schedule

Step 2: Conditional score (differentiate log pdf of Gaussian)
For x = ayuxo + o, with e ~ NV(0,1):

si(x|x0) = V. log pi(xlxo) = —

Next Step: Marginalize
» Similar to flow matching: p;(x) = [ p:(x|xo)px(x0) dxo = Ex,[p:(x]x0)]
» New problem: Computing score is more difficult because log is nonlinear!

next: how to get marginal score from conditional scores

»
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From Conditional to Marginal Score

Marginal density from superposition: p,(x) = [ p,(x|xo)px(xo) dxo

Computing the Score (note: cannot S|mply average!)

Chain rule for positive functions a;: Vlog ¥, a; = szaa

Apply to marginal: l

V. [ pi(x|xo)pav (x0) doxg
J pi(x|x0)pa (x0) dxo

5,(x) = Vilogp:(x) =

FM = References
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Score-Based Diffusion Training

Training Objective
L(0) = Eyy.elllso(xi, 1) — s:(x:]x0) |1’

where s,(x:|xo) = —= (known analytically!)
Training Procedure

1. Sample xo ~ px (data), e ~ N(0,1), t ~ U[0, T]

2. Compute forward diffusion: x, = auxo + o€

3. Compute target score: s,(x;|xo) = —

4. Compute prediction: sq(x;, )

5. Minimize squared error with gradient descent
Advantages

» No ODE solve during training

» No trace computation

» Trivial forward process (just add noise)

supervised learning on analytically known conditional scores
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Time Reversal and Sampling

Reverse SDE (stochastic, white trajectories)

dx = [f(x,1) — g*(t)sg(x, 1) dt + g(t) dW

Time-reversed SDE: samples from p, = py starting from
pT ~ N(O,I)

Probability Flow ODE (deterministic, red trajectory)

% — fet) — g2(t>s9(x, 0

Same marginals as SDE, but deterministic.

Advantages of ODE
» Faster sampling (adaptive step sizes)
» Exact likelihood computation
» Latent space interpolation
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Training and Sampling Characteristics

Training Advantages
» No ODE solving v/
» No trace computation v/
» Forward diffusion is trivial (just add noise)
» Extremely stable - regression on Gaussian noise

Sampling
» More steps than flow matching (100-1000 vs 20-100 NFE)

» But very high sample quality (SOTA FID scores)
» Extremely robust across different architectures

Trade-off
» Slower sampling, but simpler training
» Stochastic spreading vs deterministic transport
» Entropy-regularized OT interpretation (Schrédinger bridge)

State-of-the-Art: DALL-E 2, Imagen, Stable Diffusion (1-2)

extreme training stability, SOTA quality, more sampling steps

»

FM
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Summary

FM
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PDE Framework for Generative Modeling

Continuity Equation:

0
%"‘V'(ptvt):O

Po=Px, P1=DPz

'How to match?

%%
Fokker-Planck Equation:

0 (1
%‘FV'(ptvt):gZ()Ap,

Po = DPx, PT—>N<071)

More to learn: VAEs, GANs, other
approaches
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>.: PDE Approaches for Generative Modeling

Optimal Transport Flow Matching Diffusion
:
time time log(time)

Method PDE Optimal? Train Sample Key Differentiator
CNF Continuity No Slow Slow MLE with trace bottleneck
OT Flow Continuity Yes Medium Fast Theory:v=-Vo
Flow Match Continuity No Fast Fast no time integration, arbitrary p=
Diffusion Fokker-P  No Fast Slow no time integration, SDE sampling
Key Insights

» All satisfy transport PDEs (feasible), but only OT Flow is optimal

» Holy grail: Matching-type algorithms for the actual OT problem (active research)
» Tradeoff: Computational feasibility vs. theoretical optimality
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