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Reading List
Historical Context: Generative modeling has evolved from statistical density
estimation and graphical models through variational methods and adversarial training
to modern diffusion- and flow-based approaches.

Key Readings:
1. Chen et al. (2018) – Neural Ordinary Differential Equations. NeurIPS

Continuous-time neural networks foundation.

2. Benamou and Brenier (2000) – Computational Fluid Mechanics Solution to
Monge-Kantorovich. Numer. Math.
Dynamic optimal transport formulation.

3. Onken et al. (2021) – Optimal Transport Regularization for Continuous
Normalizing Flows. NeurIPS
Penalizing kinetic energy of trajectories to obtain uniqueness and improve efficiency.

4. Lipman et al. (2023) – Flow Matching for Generative Modeling. ICLR
Supervised learning objective for continuous normalizing flows.

5. Song et al. (2021) – Score-Based Generative Modeling via SDEs. ICLR
Unifying framework for diffusion via Fokker-Planck.

Lecture Outline: CNF → OT → Flow Matching → Score-Based Diffusion
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Generative Modeling as Distribution Matching

X

Z

gθ(Z)

g θ

How to match?

Mathematical Framework
▶ Goal: Learn generator gθ : Rq → Rn

that transforms latent Z to match
data X

▶ Challenges:
▶ n typically large (high-dimensional)
▶ X complicated (multimodal, disjoint

support)
▶ Core Problem: Match distributions

pgθ(Z)(x) ≈ pX (x)

▶ Today’s focus: Distribution
Matching with PDEs

generative modeling = matching high-dimensional distributions
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Classical Generative Approaches
Normalizing Flows
▶ Invertible mapping x = gθ(z) with tractable change of variables
▶ Challenge: Log-determinant expensive, architectural constraints

log pθ(x) = log pz(g−1
θ (x)) + log | det Jg−1

θ
(x)|

Variational Autoencoders (VAEs)
▶ Latent variable model with encoder-decoder structure
▶ Challenge: Blurry samples, mode collapse

LVAE = Eqµ(z|x)[log p(x|z)]− DKL(qµ(z|x)∥p(z))

Generative Adversarial Networks (GANs)
▶ Adversarial min-max game between generator gθ and discriminator dµ
▶ Challenge: Training instability, no tractable density

min
gθ

max
dµ

Ex[log dµ(x)] + Ez[log(1 − dµ(gθ(z)))]

today we focus on continuous-time models with PDEs
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Today: PDE Perspective of Generative Modeling

∂ρt

∂t
+∇ · (ρtvt) = 0, ρ0 = pX

time

∂pt

∂t
+∇ · (ptvt) =

g2(t)
2

∆pt, p0 = pX

log(time)Roadmap
1. Continuous Normalizing Flows: Method of characteristics
2. Optimal Transport: Penalize transport costs to accelerate training/sampling
3. Flow matching: Even faster training by avoiding time integration
4. Diffusion: Stochastic alternative via Fokker-Planck

central theme: derive state-of-the-art generative AI models via simple PDEs
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Continuous Normalizing Flows
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From Continuity Equation to Method of Characteristics
∂ρt

∂t
+∇ · (ρtvt) = 0, t ∈ (0, 1], ρ0 = pX

Method of Characteristics
▶ Define characteristic curves (particle trajectories):

dx
dt

= vt(x, t), x(0) ∼ pX

▶ Along these curves (log density evolution):

d log ρt(x(t))
dt

= −∇ · vt

time

Key Insight
▶ PDE (continuity equation) ⇐⇒ System of ODEs (particle trajectories)
▶ If particles follow ODEs, density automatically satisfies PDE!

CNF Idea: Parameterize velocity field vt as neural network vθ(z, t)

PDE transport ⇒ Method of characteristic ⇒ Neural ODE
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CNF Training
Neural ODE
▶ Velocity field:

dx
dt

= vθ(x(t), t) with x(0) ∼ p0

▶ Advantage: Invertible and tractable log-density for any reasonable vθ
▶ Density pt satisfies continuity equation automatically (method of characteristics)

Likelihood Computation (integrate instantaneous change of variables from Slide 5)

log pθ(x) = log p0(x(1)) +
∫ 1

0
∇ · vθ(x(t), t)dt

Training
▶ Maximize Ex∼pX [log pθ(x)] (maximum likelihood)
▶ Requirements: ODE solve + trace computation at every training step

Sampling: Draw z(1) ∼ pZ , solve ODE from t = 1 to t = 0 with vθ(z, t)

elegant theory, but ODE solving + trace at every step
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CNF Limitations

Computational Bottlenecks
1. Trace computation: O(n) per evaluation (or high-variance stochastic)
2. ODE solving: Many function evaluations needed for adaptive time-stepping
3. Training time: Significantly slower than standard architectures

CNF Problem is Under-Determined
▶ Only map matters, no control over trajectory shape
▶ Maximum likelihood ̸= minimize path energy
▶ Can produce complex, curved, high-energy paths
▶ More function evaluations needed in training and sampling

Scale Challenge
▶ Doesn’t scale well to high-dimensional imaging applications
▶ Both trace and ODE bottlenecks compound
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Using CNFs for Optimal Transport
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Regularizing CNF with Optimal Transport
Idea: Add kinetic energy penalty to MLE loss with trade-off parameter α

LOT-CNF(θ) = Ex∼pX [− log pθ(x)] +
α

2
E
[∫ 1

0
∥vθ(x(t), t)∥2dt

]

Variational Perspective via Benamou-Brenier

minimize L(ρt, vt) =

∫ 1

0

∫
1
2
∥vt(x)∥2ρt(x) dx dt + λD(ρ1, pZ)

subject to
∂ρt

∂t
+∇ · (ρtvt) = 0, ρ0 = pX

Structure from Transport Costs (when optimal)
▶ Optimality condition: vt = −∇Φt (conservative), ∇ · vt = −∆Φt
▶ Value function Φt satisfies Hamilton-Jacobi-Bellman equation
▶ Key insight: Transport cost → structure → simplified computation
▶ Note: CNF can be extended to mean field games
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OT-Flow - Learning the Value Function
Idea: Directly learn the value function Φ to exploit gradient structure

Training Objective (simplified from OT-Flow formulation)
Given samples x1, . . . , xN ∼ pX , learn Φθ(x, t) such that:
▶ Velocity: vθ = −∇xΦθ (conservative by construction)
▶ Maximize likelihood w.r.t. standard normal p1 = N (0, I)
▶ Add penalty terms to enforce Hamilton-Jacobi-Bellman equation

Key Computational Advantage
▶ Divergence: ∇ · v = −∆Φθ (Laplacian)
▶ Can compute ∆Φθ directly with O(m2n) operations (where m = network width)
▶ Enables efficient likelihood computation during training

What OT-Flow Achieves
▶ Theoretical: Unique solution, straighter paths (minimal kinetic energy)
▶ Computational: Explicit Laplacian, fewer function evaluations
▶ Sampling: Can use fewer time steps than vanilla CNF
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OT-Flow - Benefits and Limitations

time

Benefits Over Vanilla CNF
Theoretical:
▶ Unique solution (OT map)
▶ Min kinetic energy → straighter paths

Computational:
▶ Explicit Laplacian: ∇ · v = −∆Φ

▶ More sampling efficient
▶ Fewer steps than vanilla CNF

time

Why Not Used for Imaging?

MLE Framework Limitations:
▶ time integration in training
▶ Likelihood computation: expensive

and unstable (manifold hypothesis)

Next: Flow matching and diffusion
▶ no time integration in training
▶ simpler, faster training, SOTA

sample quality
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Flow Matching
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Key Idea: Feasible Paths via Superposition
∂ρt

∂t
+∇ · (ρtvt) = 0, ρ0 = pX , ρ1 = pZ

Special Case: Two Dirac Deltas
For point pair pX = δ(x0) and pZ = δ(x1), OT map is
▶ Conditional path: ψt(x0, x1) = (1 − t)x0 + tx1

▶ Conditional density: ρt(·|x0, x1) = δ(x − ψt(x0, x1))

▶ Conditional velocity: ut(x|x0, x1) =
dψt
dt = x1 − x0

Superposition via Linearity
Sample x0 ∼ pX and x1 ∼ pZ independently.
By linearity of the PDE, the marginal density is:

ρt(x) =
∫
δ(x − ψt(x0, x1))pX (x0)pZ(x1) dx0 dx1 = Ex0,x1 [ρt(x|x0, x1)]

This gives a feasible probability path!

Question: How do we get the marginal velocity vt?
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From Conditional to Marginal Velocity
For each (x0, x1) the conditional density and conditional velocity satisfy

∂ρt(x|x0, x1)

∂t
+∇ · (ρt(x|x0, x1)ut(x|x0, x1)) = 0

Step 1: Take expectation over (x0, x1) ∼ pX × pZ∫
∂ρt(x|x0, x1)

∂t
pX (x0)pZ(x1)dx0dx1 +

∫
∇ · (ρt(x|x0, x1)ut(x|x0, x1))pX (x0)pZ(x1)dx0dx1 = 0

Step 2: Interchange differentiation and integration
∂

∂t

[∫
ρt(x|x0, x1)pX (x0)pZ(x1)dx0dx1

]
+∇·

[∫
ρt(x|x0, x1)ut(x|x0, x1)pX (x0)pZ(x1)dx0dx1

]
= 0

Step 3: Identify Coefficients. This is ∂ρt
∂t +∇ · (ρtvt) = 0 with:

vt(x) =

∫
ut(x|x0, x1)ρt(x|x0, x1)pX (x0)pZ(x1)dx0dx1∫

ρt(x|x0, x1)pX (x0)pZ(x1)dx0dx1

marginal velocity is weighted average of conditional velocities
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Conditional Expectation Interpretation
From Integral to Conditional Expectation
The marginal velocity can be written as:

vt(x) =

∫
ut(x|x0, x1)ρt(x|x0, x1)p(x0, x1)dx0dx1∫

ρt(x|x0, x1)p(x0, x1)dx0dx1
= E[ut(x|x0, x1) | ψt(x0, x1) = x]

where p(x0, x1) = pX (x1)N (x0)

Problem: Computing this conditional expectation in high dimensions is intractable!

Reminder: Conditional Expectation

General form: E[Y | X = x] =
∫

y p(y|x)dy∫
p(y|x)dy

Here: Y = ut(x|x0, x1), condition on ψt(x0, x1) = x

next: How to compute this expectation?
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From Expectation to Function Approximation

Idea: Regression to Compute Expectation Use a neural network vθ(x, t) and
minimize:

LCFM(θ) = Et,x0,x1 [∥vθ(ψt(x0, x1), t)− ut(x|x0, x1)∥2]

where ut(x|x0, x1) = x1 − x0 is known analytically!

Why This Works: A Simple Example
Two data points with the same x but different y values: (x, y1) and (x, y2)

Minimize: L(v) = |v(x)− y1|2 + |v(x)− y2|2

Optimality: ∂L
∂v(x) = 2(v(x)− y1) + 2(v(x)− y2) = 0 ⇒ v∗(x) = y1+y2

2

Key insight: v∗(x) is the average of y-values at x = conditional expectation!
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Conditional Flow Matching Training
Training Objective

LCFM(θ) = Et,x0,x1 [∥vθ(ψt(x0, x1), t)− ut(x|x0, x1)∥2]

Training Procedure
1. Sample x0 ∼ pX , x1 ∼ pZ , t ∼ U[0, 1]
2. Compute path location: ψt = (1 − t)x0 + tx1

3. Compute target velocity: ut = x1 − x0

4. Compute prediction: vθ(ψt, t)
5. Minimize squared error with stochastic gradient descent

Advantages
▶ No ODE solve during training
▶ No trace computation
▶ Simple supervised learning (not adversarial or variational)

Sampling: Solve ODE with learned vθ from t = 1 to t = 0 (same as in CNF)

supervised learning on analytically known conditional velocities
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Discussion - Flow Matching
The Flow Matching Recipe

1. Construct conditional flows from point pairs (Dirac deltas)
2. Use superposition via linearity → marginal densities
3. Fit neural network to match conditional velocities (supervised learning)

Computational Advantages
▶ Training: No ODE solves, no trace estimation → significantly faster than CNF
▶ Sampling: Linear interpolation → fewer function evaluations
▶ Simplicity: Convexity in vt, supervised learning

Trade-offs
▶ Produces feasible pairs (satisfies continuity equation) ✓
▶ Does NOT minimize Benamou-Brenier kinetic energy (not optimal)
▶ Construction beats optimization in high dimensions!

State-of-the-Art: Stable Diffusion 3, Sora, AlphaFold 3

next: What about stochastic alternatives? (diffusion via Fokker-Planck)

Title Intro CNF OT FM Diffusion Σ References 20



lruthot@emory.edu Comp Math and AI @ PDE for GenAI

Score-Based Diffusion
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Stochastic Alternative - Fokker-Planck PDE
Idea: Use second-order PDE to map data to Gaussian

∂pt

∂t
= −∇ · (vtpt) +

g2(t)
2

∇ · (∇pt), t > 0, p0 = pX

Choose vt so that pT(x) converges to tractable distribution as T → ∞ (i.e., Gaussian).

Example: Variance-Preserving Formulation (Mean Reversal)

vt(x) = −1
2
β(t)x, g2(t) = β(t)

This gives variance-preserving dynamics: pT → N (0, I)
Common choices for β(t):
▶ Linear: β(t) = βmin + (βmax − βmin) · t/T
▶ Cosine: β(t) derived from αt = cos(πt/2T)

Our code: βmin = 0.1, βmax = 20, T = 5

diffusion term causes asymptotic convergence to Gaussian
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Log Transform Reveals Score Function
The Score Function

st(x) := ∇x log pt(x) =
∇pt(x)
pt(x)

Substituting Score into FP-PDE
Recall divergence-gradient form from previous slide. Use ∇pt = ptst to rewrite:

∂pt

∂t
= −∇ ·

[
vtpt −

g2(t)
2

∇pt

]

= −∇ ·
[

vtpt −
g2(t)

2
ptst

]
= −∇ ·

[(
vt −

g2(t)
2

st

)
pt

]
Key Insight: Score cancels the diffusion term, giving nonlinear continuity equation
Sampling: Solve ODE with velocity vt(x)− g2(t)

2 st(x) from t = T to t = 0.

problem: how to get the score function without solving high-dim FP?
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Score Matching - Conditional Construction
Idea (similar to flow matching): Start simple and use linearity of PDE!

Construction Strategy
Step 1: Pick x0 ∼ pX , solve FP-PDE with Dirac initial condition p0(x) = δ(x − x0)

Solution is Gaussian (from variance-preserving SDE):

pt(x|x0) = N (x;αtx0, σ
2
t I)

where αt, σt are known analytically for the variance-preserving schedule

Step 2: Conditional score (differentiate log pdf of Gaussian)
For x = αtx0 + σtϵ with ϵ ∼ N (0, I):

st(x|x0) = ∇x log pt(x|x0) = −x − αtx0

σ2
t

= − ϵ

σt

Next Step: Marginalize
▶ Similar to flow matching: pt(x) =

∫
pt(x|x0)pX (x0) dx0 = Ex0 [pt(x|x0)]

▶ New problem: Computing score is more difficult because log is nonlinear!

next: how to get marginal score from conditional scores
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From Conditional to Marginal Score
Marginal density from superposition: pt(x) =

∫
pt(x|x0)pX (x0) dx0

Computing the Score (note: cannot simply average!)
Chain rule for positive functions ai: ∇ log

∑
i ai =

∑
i ∇ai∑

i ai

Apply to marginal:

st(x) = ∇x log pt(x) =
∇x

∫
pt(x|x0)pX (x0) dx0∫

pt(x|x0)pX (x0) dx0

=

∫
∇xpt(x|x0)pX (x0) dx0∫

pt(x|x0)pX (x0) dx0

Recall st(x|x0) = ∇x log pt(x|x0) =
∇xpt(x|x0)

pt(x|x0)
, thus:

st(x) =

∫
st(x|x0)pt(x|x0)pX (x0) dx0∫

pt(x|x0)pX (x0) dx0
= Ex0 [st(x|x0) | x]

Compute Expectation by Minimizing

L(θ) = Et,x0,ϵ[∥sθ(xt, t)− st(xt|x0)∥2], xt = αtx0 + σtϵ
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Score-Based Diffusion Training
Training Objective

L(θ) = Et,x0,ϵ[∥sθ(xt, t)− st(xt|x0)∥2]

where st(xt|x0) = − ϵ
σt

(known analytically!)

Training Procedure
1. Sample x0 ∼ pX (data), ϵ ∼ N (0, I), t ∼ U[0,T]
2. Compute forward diffusion: xt = αtx0 + σtϵ

3. Compute target score: st(xt|x0) = − ϵ
σt

4. Compute prediction: sθ(xt, t)
5. Minimize squared error with gradient descent

Advantages
▶ No ODE solve during training
▶ No trace computation
▶ Trivial forward process (just add noise)

supervised learning on analytically known conditional scores
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Time Reversal and Sampling

Reverse SDE (stochastic, white trajectories)

dx = [f (x, t)− g2(t)sθ(x, t)] dt + g(t) dW̄

Time-reversed SDE: samples from p0 = pX starting from
pT ≈ N (0, I).

Probability Flow ODE (deterministic, red trajectory)

dx
dt

= f (x, t)− g2(t)
2

sθ(x, t)

Same marginals as SDE, but deterministic.

Advantages of ODE
▶ Faster sampling (adaptive step sizes)
▶ Exact likelihood computation
▶ Latent space interpolation
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Training and Sampling Characteristics
Training Advantages
▶ No ODE solving ✓
▶ No trace computation ✓
▶ Forward diffusion is trivial (just add noise)
▶ Extremely stable - regression on Gaussian noise

Sampling
▶ More steps than flow matching (100-1000 vs 20-100 NFE)
▶ But very high sample quality (SOTA FID scores)
▶ Extremely robust across different architectures

Trade-off
▶ Slower sampling, but simpler training
▶ Stochastic spreading vs deterministic transport
▶ Entropy-regularized OT interpretation (Schrödinger bridge)

State-of-the-Art: DALL-E 2, Imagen, Stable Diffusion (1-2)

extreme training stability, SOTA quality, more sampling steps
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Summary
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PDE Framework for Generative Modeling

X

Z

gθ(Z)

g θ

How to match?

Continuity Equation:

∂ρt

∂t
+∇ · (ρtvt) = 0

ρ0 = pX , ρ1 = pZ

Fokker-Planck Equation:

∂pt

∂t
+∇ · (ptvt) =

g2(t)
2

∆pt

p0 = pX , pT → N (0, I)

More to learn: VAEs, GANs, other
approaches
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Σ: PDE Approaches for Generative Modeling

time

Optimal Transport

time

Flow Matching

log(time)

Diffusion

Method PDE Optimal? Train Sample Key Differentiator
CNF Continuity No Slow Slow MLE with trace bottleneck
OT Flow Continuity Yes Medium Fast Theory: v = −∇Φ
Flow Match Continuity No Fast Fast no time integration, arbitrary pZ
Diffusion Fokker-P No Fast Slow no time integration, SDE sampling

Key Insights
▶ All satisfy transport PDEs (feasible), but only OT Flow is optimal
▶ Holy grail: Matching-type algorithms for the actual OT problem (active research)
▶ Tradeoff: Computational feasibility vs. theoretical optimality
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