

# Computational Mathematics and AI

## Lecture 6: PDE Framework for Generative Modeling

Lars Ruthotto

Departments of Mathematics and Computer Science

[lruthotto@emory.edu](mailto:lruthotto@emory.edu)

 [larsruthotto](https://www.linkedin.com/in/larsruthotto)



[slido.com #CBMS25](https://www.slido.com/#CBMS25)



# Reading List

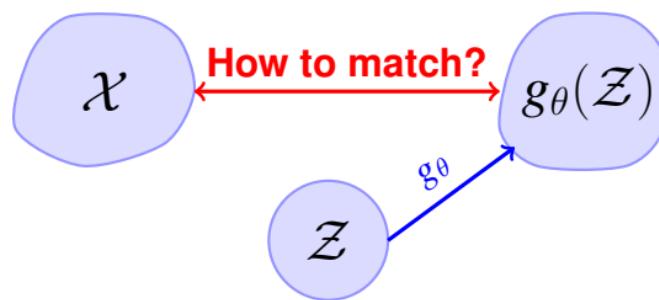
**Historical Context:** Generative modeling has evolved from statistical density estimation and graphical models through variational methods and adversarial training to modern diffusion- and flow-based approaches.

## Key Readings:

1. Chen et al. (2018) – Neural Ordinary Differential Equations. *NeurIPS*  
Continuous-time neural networks foundation.
2. Benamou and Brenier (2000) – Computational Fluid Mechanics Solution to Monge-Kantorovich. *Numer. Math.*  
Dynamic optimal transport formulation.
3. Onken et al. (2021) – Optimal Transport Regularization for Continuous Normalizing Flows. *NeurIPS*  
Penalizing kinetic energy of trajectories to obtain uniqueness and improve efficiency.
4. Lipman et al. (2023) – Flow Matching for Generative Modeling. *ICLR*  
Supervised learning objective for continuous normalizing flows.
5. Song et al. (2021) – Score-Based Generative Modeling via SDEs. *ICLR*  
Unifying framework for diffusion via Fokker-Planck.

**Lecture Outline:** CNF → OT → Flow Matching → Score-Based Diffusion

# Generative Modeling as Distribution Matching



## Mathematical Framework

- ▶ **Goal:** Learn generator  $g_\theta : \mathbb{R}^q \rightarrow \mathbb{R}^n$  that transforms latent  $\mathcal{Z}$  to match data  $\mathcal{X}$
- ▶ **Challenges:**
  - ▶  $n$  typically large (high-dimensional)
  - ▶  $\mathcal{X}$  complicated (multimodal, disjoint support)
- ▶ **Core Problem:** Match distributions

$$p_{g_\theta(\mathcal{Z})}(x) \approx p_{\mathcal{X}}(x)$$

- ▶ **Today's focus:** Distribution Matching with PDEs

**generative modeling = matching high-dimensional distributions**

# Classical Generative Approaches

## Normalizing Flows

- ▶ Invertible mapping  $x = g_\theta(z)$  with tractable change of variables
- ▶ Challenge: Log-determinant expensive, architectural constraints

$$\log p_\theta(x) = \log p_z(g_\theta^{-1}(x)) + \log |\det J_{g_\theta^{-1}}(x)|$$

## Variational Autoencoders (VAEs)

- ▶ Latent variable model with encoder-decoder structure
- ▶ Challenge: Blurry samples, mode collapse

$$\mathcal{L}_{\text{VAE}} = \mathbb{E}_{q_\mu(z|x)}[\log p(x|z)] - D_{\text{KL}}(q_\mu(z|x) \| p(z))$$

## Generative Adversarial Networks (GANs)

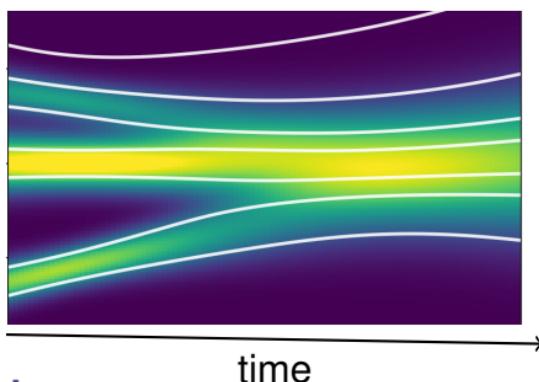
- ▶ Adversarial min-max game between generator  $g_\theta$  and discriminator  $d_\mu$
- ▶ Challenge: Training instability, no tractable density

$$\min_{g_\theta} \max_{d_\mu} \mathbb{E}_x[\log d_\mu(x)] + \mathbb{E}_z[\log(1 - d_\mu(g_\theta(z)))]$$

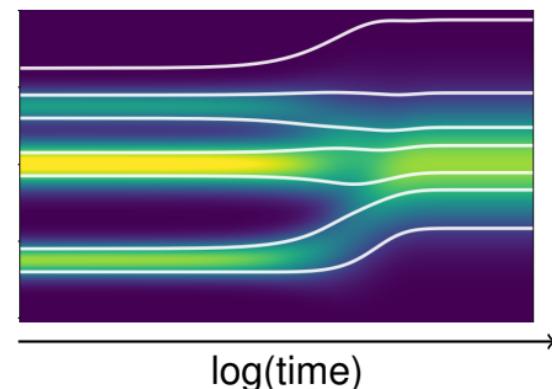
**today we focus on continuous-time models with PDEs**

# Today: PDE Perspective of Generative Modeling

$$\frac{\partial \rho_t}{\partial t} + \nabla \cdot (\rho_t v_t) = 0, \quad \rho_0 = p_x$$



$$\frac{\partial p_t}{\partial t} + \nabla \cdot (p_t v_t) = \frac{g^2(t)}{2} \Delta p_t, \quad p_0 = p_x$$



## Roadmap

1. **Continuous Normalizing Flows:** Method of characteristics
2. **Optimal Transport:** Penalize transport costs to accelerate training/sampling
3. **Flow matching:** Even faster training by avoiding time integration
4. **Diffusion:** Stochastic alternative via Fokker-Planck

**central theme: derive state-of-the-art generative AI models via simple PDEs**

# Continuous Normalizing Flows

# From Continuity Equation to Method of Characteristics

$$\frac{\partial \rho_t}{\partial t} + \nabla \cdot (\rho_t v_t) = 0, \quad t \in (0, 1], \quad \rho_0 = p_x$$

## Method of Characteristics

- ▶ Define **characteristic curves** (particle trajectories):

$$\frac{dx}{dt} = v_t(x, t), \quad x(0) \sim p_x$$

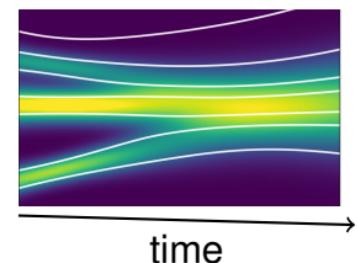
- ▶ Along these curves (log density evolution):

$$\frac{d \log \rho_t(x(t))}{dt} = -\nabla \cdot v_t$$

## Key Insight

- ▶ **PDE** (continuity equation)  $\iff$  **System of ODEs** (particle trajectories)
- ▶ If particles follow ODEs, density automatically satisfies PDE!

**CNF Idea:** Parameterize velocity field  $v_t$  as neural network  $v_\theta(z, t)$



**PDE transport  $\Rightarrow$  Method of characteristic  $\Rightarrow$  Neural ODE**

# CNF Training

## Neural ODE

- ▶ Velocity field:  $\frac{dx}{dt} = v_\theta(x(t), t)$  with  $x(0) \sim p_0$
- ▶ **Advantage:** Invertible and tractable log-density for any reasonable  $v_\theta$
- ▶ Density  $p_t$  satisfies continuity equation automatically (method of characteristics)

**Likelihood Computation** (integrate instantaneous change of variables from Slide 5)

$$\log p_\theta(x) = \log p_0(x(1)) + \int_0^1 \nabla \cdot v_\theta(x(t), t) dt$$

## Training

- ▶ Maximize  $\mathbb{E}_{x \sim p_X} [\log p_\theta(x)]$  (maximum likelihood)
- ▶ **Requirements:** ODE solve + trace computation at every training step

**Sampling:** Draw  $z(1) \sim p_Z$ , solve ODE from  $t = 1$  to  $t = 0$  with  $v_\theta(z, t)$

**elegant theory, but ODE solving + trace at every step**

# CNF Limitations

## Computational Bottlenecks

1. **Trace computation:**  $O(n)$  per evaluation (or high-variance stochastic)
2. **ODE solving:** Many function evaluations needed for adaptive time-stepping
3. **Training time:** Significantly slower than standard architectures

## CNF Problem is Under-Determined

- ▶ Only map matters, no control over **trajectory shape**
- ▶ Maximum likelihood  $\neq$  minimize path energy
- ▶ Can produce **complex, curved, high-energy paths**
- ▶ More function evaluations needed in training and sampling

## Scale Challenge

- ▶ Doesn't scale well to high-dimensional imaging applications
- ▶ Both trace and ODE bottlenecks compound

# Using CNFs for Optimal Transport

# Regularizing CNF with Optimal Transport

Idea: Add kinetic energy penalty to MLE loss with trade-off parameter  $\alpha$

$$\mathcal{L}_{\text{OT-CNF}}(\theta) = \mathbb{E}_{x \sim p_{\mathcal{X}}}[-\log p_{\theta}(x)] + \frac{\alpha}{2} \mathbb{E} \left[ \int_0^1 \|v_{\theta}(x(t), t)\|^2 dt \right]$$

## Variational Perspective via Benamou-Brenier

$$\begin{aligned} \text{minimize} \quad & \mathcal{L}(\rho_t, v_t) = \int_0^1 \int \frac{1}{2} \|v_t(x)\|^2 \rho_t(x) dx dt + \lambda D(\rho_1, p_{\mathcal{Z}}) \\ \text{subject to} \quad & \frac{\partial \rho_t}{\partial t} + \nabla \cdot (\rho_t v_t) = 0, \quad \rho_0 = p_{\mathcal{X}} \end{aligned}$$

## Structure from Transport Costs (when optimal)

- ▶ Optimality condition:  $v_t = -\nabla \Phi_t$  (conservative),  $\nabla \cdot v_t = -\Delta \Phi_t$
- ▶ Value function  $\Phi_t$  satisfies Hamilton-Jacobi-Bellman equation
- ▶ **Key insight:** Transport cost  $\rightarrow$  structure  $\rightarrow$  simplified computation
- ▶ **Note:** CNF can be extended to mean field games

# OT-Flow - Learning the Value Function

**Idea:** Directly learn the value function  $\Phi$  to exploit gradient structure

**Training Objective** (simplified from OT-Flow formulation)

Given samples  $x_1, \dots, x_N \sim p_{\mathcal{X}}$ , learn  $\Phi_{\theta}(x, t)$  such that:

- ▶ Velocity:  $v_{\theta} = -\nabla_x \Phi_{\theta}$  (conservative by construction)
- ▶ Maximize likelihood w.r.t. standard normal  $p_1 = \mathcal{N}(0, I)$
- ▶ Add penalty terms to enforce Hamilton-Jacobi-Bellman equation

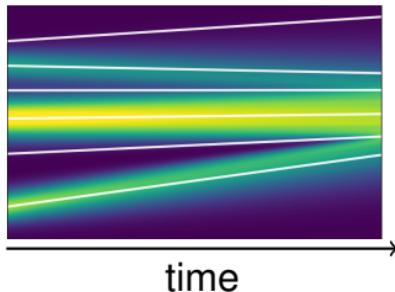
## Key Computational Advantage

- ▶ Divergence:  $\nabla \cdot v = -\Delta \Phi_{\theta}$  (Laplacian)
- ▶ Can compute  $\Delta \Phi_{\theta}$  directly with  $O(m^2n)$  operations (where  $m$  = network width)
- ▶ Enables efficient likelihood computation during training

## What OT-Flow Achieves

- ▶ **Theoretical:** Unique solution, straighter paths (minimal kinetic energy)
- ▶ **Computational:** Explicit Laplacian, fewer function evaluations
- ▶ **Sampling:** Can use fewer time steps than vanilla CNF

# OT-Flow - Benefits and Limitations



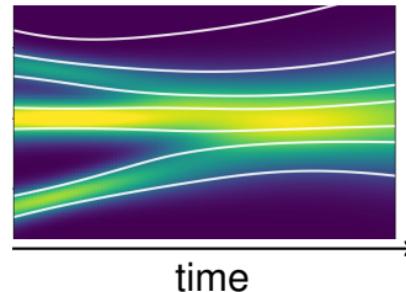
## Benefits Over Vanilla CNF

### Theoretical:

- ▶ Unique solution (OT map)
- ▶ Min kinetic energy  $\rightarrow$  straighter paths

### Computational:

- ▶ Explicit Laplacian:  $\nabla \cdot v = -\Delta \Phi$
- ▶ More sampling efficient
- ▶ Fewer steps than vanilla CNF



## Why Not Used for Imaging?

### MLE Framework Limitations:

- ▶ time integration in training
- ▶ Likelihood computation: expensive and unstable (manifold hypothesis)

## Next: Flow matching and diffusion

- ▶ no time integration in training
- ▶ simpler, faster training, SOTA sample quality

# Flow Matching

# Key Idea: Feasible Paths via Superposition

$$\frac{\partial \rho_t}{\partial t} + \nabla \cdot (\rho_t v_t) = 0, \quad \rho_0 = p_{\mathcal{X}}, \quad \rho_1 = p_{\mathcal{Z}}$$

## Special Case: Two Dirac Deltas

For point pair  $p_{\mathcal{X}} = \delta(x_0)$  and  $p_{\mathcal{Z}} = \delta(x_1)$ , OT map is

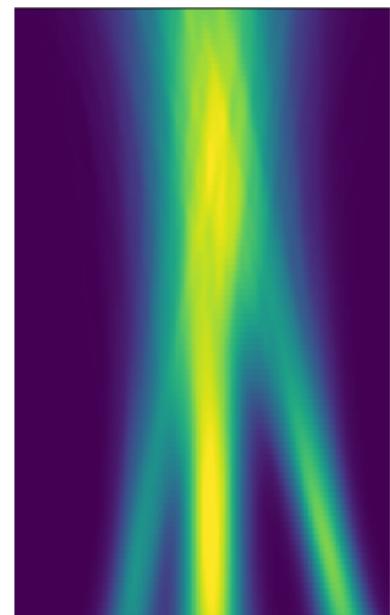
- ▶ Conditional path:  $\psi_t(x_0, x_1) = (1 - t)x_0 + tx_1$
- ▶ Conditional density:  $\rho_t(\cdot | x_0, x_1) = \delta(x - \psi_t(x_0, x_1))$
- ▶ Conditional velocity:  $u_t(x | x_0, x_1) = \frac{d\psi_t}{dt} = x_1 - x_0$

## Superposition via Linearity

Sample  $x_0 \sim p_{\mathcal{X}}$  and  $x_1 \sim p_{\mathcal{Z}}$  independently.

By linearity of the PDE, the marginal density is:

$$\rho_t(x) = \int \delta(x - \psi_t(x_0, x_1)) p_{\mathcal{X}}(x_0) p_{\mathcal{Z}}(x_1) dx_0 dx_1 = \mathbb{E}_{x_0, x_1} [\rho_t(x | x_0, x_1)]$$



This gives a **feasible** probability path!

**Question: How do we get the marginal velocity  $v_t$ ?**

# From Conditional to Marginal Velocity

For each  $(x_0, x_1)$  the conditional density and conditional velocity satisfy

$$\frac{\partial \rho_t(x|x_0, x_1)}{\partial t} + \nabla \cdot (\rho_t(x|x_0, x_1)u_t(x|x_0, x_1)) = 0$$

**Step 1: Take expectation over  $(x_0, x_1) \sim p_{\mathcal{X}} \times p_{\mathcal{Z}}$**

$$\int \frac{\partial \rho_t(x|x_0, x_1)}{\partial t} p_{\mathcal{X}}(x_0) p_{\mathcal{Z}}(x_1) dx_0 dx_1 + \int \nabla \cdot (\rho_t(x|x_0, x_1)u_t(x|x_0, x_1)) p_{\mathcal{X}}(x_0) p_{\mathcal{Z}}(x_1) dx_0 dx_1 = 0$$

**Step 2: Interchange differentiation and integration**

$$\frac{\partial}{\partial t} \left[ \int \rho_t(x|x_0, x_1) p_{\mathcal{X}}(x_0) p_{\mathcal{Z}}(x_1) dx_0 dx_1 \right] + \nabla \cdot \left[ \int \rho_t(x|x_0, x_1) u_t(x|x_0, x_1) p_{\mathcal{X}}(x_0) p_{\mathcal{Z}}(x_1) dx_0 dx_1 \right] = 0$$

**Step 3: Identify Coefficients.** This is  $\frac{\partial \rho_t}{\partial t} + \nabla \cdot (\rho_t v_t) = 0$  with:

$$v_t(x) = \frac{\int u_t(x|x_0, x_1) \rho_t(x|x_0, x_1) p_{\mathcal{X}}(x_0) p_{\mathcal{Z}}(x_1) dx_0 dx_1}{\int \rho_t(x|x_0, x_1) p_{\mathcal{X}}(x_0) p_{\mathcal{Z}}(x_1) dx_0 dx_1}$$

**marginal velocity is weighted average of conditional velocities**

# Conditional Expectation Interpretation

## From Integral to Conditional Expectation

The marginal velocity can be written as:

$$v_t(x) = \frac{\int u_t(x|x_0, x_1) \rho_t(x|x_0, x_1) p(x_0, x_1) dx_0 dx_1}{\int \rho_t(x|x_0, x_1) p(x_0, x_1) dx_0 dx_1} = \mathbb{E}[u_t(x|x_0, x_1) \mid \psi_t(x_0, x_1) = x]$$

where  $p(x_0, x_1) = p_{\mathcal{X}}(x_1) \mathcal{N}(x_0)$

**Problem:** Computing this conditional expectation in high dimensions is **intractable!**

## Reminder: Conditional Expectation

General form:  $\mathbb{E}[Y \mid X = x] = \frac{\int y p(y|x) dy}{\int p(y|x) dy}$

Here:  $Y = u_t(x|x_0, x_1)$ , condition on  $\psi_t(x_0, x_1) = x$

**next: How to compute this expectation?**

# From Expectation to Function Approximation

**Idea: Regression to Compute Expectation** Use a neural network  $v_\theta(x, t)$  and minimize:

$$\mathcal{L}_{\text{CFM}}(\theta) = \mathbb{E}_{t, x_0, x_1} [\|v_\theta(\psi_t(x_0, x_1), t) - u_t(x|x_0, x_1)\|^2]$$

where  $u_t(x|x_0, x_1) = x_1 - x_0$  is known analytically!

## Why This Works: A Simple Example

Two data points with the same  $x$  but different  $y$  values:  $(x, y_1)$  and  $(x, y_2)$

Minimize:  $L(v) = |v(x) - y_1|^2 + |v(x) - y_2|^2$

Optimality:  $\frac{\partial L}{\partial v(x)} = 2(v(x) - y_1) + 2(v(x) - y_2) = 0 \Rightarrow v^*(x) = \frac{y_1 + y_2}{2}$

**Key insight:**  $v^*(x)$  is the **average** of  $y$ -values at  $x$  = conditional expectation!

# Conditional Flow Matching Training

## Training Objective

$$\mathcal{L}_{\text{CFM}}(\theta) = \mathbb{E}_{t, x_0, x_1} [\|v_\theta(\psi_t(x_0, x_1), t) - u_t(x|x_0, x_1)\|^2]$$

## Training Procedure

1. Sample  $x_0 \sim p_{\mathcal{X}}, x_1 \sim p_{\mathcal{Z}}, t \sim U[0, 1]$
2. Compute path location:  $\psi_t = (1 - t)x_0 + tx_1$
3. Compute target velocity:  $u_t = x_1 - x_0$
4. Compute prediction:  $v_\theta(\psi_t, t)$
5. Minimize squared error with stochastic gradient descent

## Advantages

- ▶ No ODE solve during training
- ▶ No trace computation
- ▶ Simple supervised learning (not adversarial or variational)

**Sampling:** Solve ODE with learned  $v_\theta$  from  $t = 1$  to  $t = 0$  (same as in CNF)

**supervised learning on analytically known conditional velocities**

# Discussion - Flow Matching

## The Flow Matching Recipe

1. Construct conditional flows from point pairs (Dirac deltas)
2. Use superposition via linearity  $\rightarrow$  marginal densities
3. Fit neural network to match conditional velocities (supervised learning)

## Computational Advantages

- ▶ **Training:** No ODE solves, no trace estimation  $\rightarrow$  significantly faster than CNF
- ▶ **Sampling:** Linear interpolation  $\rightarrow$  fewer function evaluations
- ▶ **Simplicity:** Convexity in  $v_t$ , supervised learning

## Trade-offs

- ▶ Produces **feasible** pairs (satisfies continuity equation) ✓
- ▶ Does NOT minimize Benamou-Brenier kinetic energy (not optimal)
- ▶ Construction beats optimization in high dimensions!

**State-of-the-Art:** Stable Diffusion 3, Sora, AlphaFold 3

**next: What about stochastic alternatives? (diffusion via Fokker-Planck)**

# Score-Based Diffusion

# Stochastic Alternative - Fokker-Planck PDE

**Idea:** Use second-order PDE to map data to Gaussian

$$\frac{\partial p_t}{\partial t} = -\nabla \cdot (v_t p_t) + \frac{g^2(t)}{2} \nabla \cdot (\nabla p_t), \quad t > 0, \quad p_0 = p_x$$

Choose  $v_t$  so that  $p_T(x)$  converges to tractable distribution as  $T \rightarrow \infty$  (i.e., Gaussian).

**Example: Variance-Preserving Formulation (Mean Reversal)**

$$v_t(x) = -\frac{1}{2}\beta(t)x, \quad g^2(t) = \beta(t)$$

This gives variance-preserving dynamics:  $p_T \rightarrow \mathcal{N}(0, I)$

**Common choices for  $\beta(t)$ :**

- ▶ **Linear:**  $\beta(t) = \beta_{\min} + (\beta_{\max} - \beta_{\min}) \cdot t/T$
- ▶ **Cosine:**  $\beta(t)$  derived from  $\alpha_t = \cos(\pi t/2T)$

**Our code:**  $\beta_{\min} = 0.1$ ,  $\beta_{\max} = 20$ ,  $T = 5$

**diffusion term causes asymptotic convergence to Gaussian**

# Log Transform Reveals Score Function

## The Score Function

$$s_t(x) := \nabla_x \log p_t(x) = \frac{\nabla p_t(x)}{p_t(x)}$$

## Substituting Score into FP-PDE

Recall divergence-gradient form from previous slide. Use  $\nabla p_t = p_t s_t$  to rewrite:

$$\frac{\partial p_t}{\partial t} = -\nabla \cdot \left[ v_t p_t - \frac{g^2(t)}{2} \nabla p_t \right]$$

# Score Matching - Conditional Construction

**Idea (similar to flow matching):** Start simple and use linearity of PDE!

## Construction Strategy

**Step 1:** Pick  $x_0 \sim p_{\mathcal{X}}$ , solve FP-PDE with Dirac initial condition  $p_0(x) = \delta(x - x_0)$

Solution is Gaussian (from variance-preserving SDE):

$$p_t(x|x_0) = \mathcal{N}(x; \alpha_t x_0, \sigma_t^2 I)$$

where  $\alpha_t, \sigma_t$  are known analytically for the variance-preserving schedule

**Step 2:** Conditional score (differentiate log pdf of Gaussian)

For  $x = \alpha_t x_0 + \sigma_t \epsilon$  with  $\epsilon \sim \mathcal{N}(0, I)$ :

$$s_t(x|x_0) = \nabla_x \log p_t(x|x_0) = -\frac{x - \alpha_t x_0}{\sigma_t^2} = -\frac{\epsilon}{\sigma_t}$$

## Next Step: Marginalize

- ▶ Similar to flow matching:  $p_t(x) = \int p_t(x|x_0)p_{\mathcal{X}}(x_0) dx_0 = \mathbb{E}_{x_0}[p_t(x|x_0)]$
- ▶ New problem: Computing score is more difficult because log is nonlinear!

**next: how to get marginal score from conditional scores**

# From Conditional to Marginal Score

Marginal density from superposition:  $p_t(x) = \int p_t(x|x_0)p_{\mathcal{X}}(x_0) dx_0$

**Computing the Score** (note: cannot simply average!)

Chain rule for positive functions  $a_i$ :  $\nabla \log \sum_i a_i = \frac{\sum_i \nabla a_i}{\sum_i a_i}$

Apply to marginal:

$$s_t(x) = \nabla_x \log p_t(x) = \frac{\nabla_x \int p_t(x|x_0)p_{\mathcal{X}}(x_0) dx_0}{\int p_t(x|x_0)p_{\mathcal{X}}(x_0) dx_0}$$

# Score-Based Diffusion Training

## Training Objective

$$\mathcal{L}(\theta) = \mathbb{E}_{t, x_0, \epsilon} [\|s_\theta(x_t, t) - s_t(x_t | x_0)\|^2]$$

where  $s_t(x_t | x_0) = -\frac{\epsilon}{\sigma_t}$  (known analytically!)

## Training Procedure

1. Sample  $x_0 \sim p_{\mathcal{X}}$  (data),  $\epsilon \sim \mathcal{N}(0, I)$ ,  $t \sim U[0, T]$
2. Compute forward diffusion:  $x_t = \alpha_t x_0 + \sigma_t \epsilon$
3. Compute target score:  $s_t(x_t | x_0) = -\frac{\epsilon}{\sigma_t}$
4. Compute prediction:  $s_\theta(x_t, t)$
5. Minimize squared error with gradient descent

## Advantages

- ▶ No ODE solve during training
- ▶ No trace computation
- ▶ Trivial forward process (just add noise)

**supervised learning on analytically known conditional scores**

# Time Reversal and Sampling

## Reverse SDE (stochastic, white trajectories)

$$dx = [f(x, t) - g^2(t)s_\theta(x, t)] dt + g(t) d\bar{W}$$

Time-reversed SDE: samples from  $p_0 = p_{\mathcal{X}}$  starting from  $p_T \approx \mathcal{N}(0, I)$ .

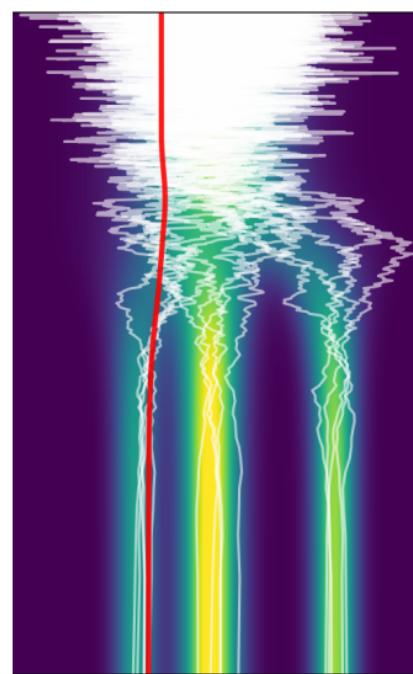
## Probability Flow ODE (deterministic, red trajectory)

$$\frac{dx}{dt} = f(x, t) - \frac{g^2(t)}{2} s_\theta(x, t)$$

Same marginals as SDE, but deterministic.

## Advantages of ODE

- ▶ Faster sampling (adaptive step sizes)
- ▶ Exact likelihood computation
- ▶ Latent space interpolation



# Training and Sampling Characteristics

## Training Advantages

- ▶ No ODE solving ✓
- ▶ No trace computation ✓
- ▶ Forward diffusion is trivial (just add noise)
- ▶ **Extremely stable** - regression on Gaussian noise

## Sampling

- ▶ More steps than flow matching (100-1000 vs 20-100 NFE)
- ▶ But very high sample quality (SOTA FID scores)
- ▶ Extremely robust across different architectures

## Trade-off

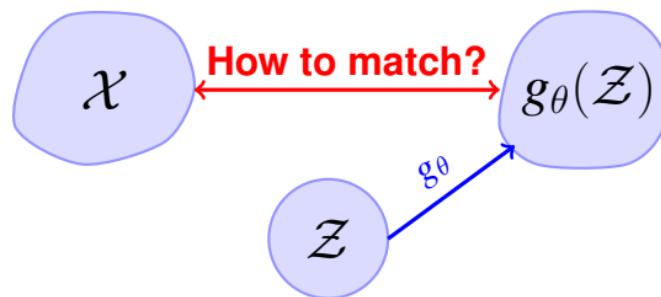
- ▶ Slower sampling, but simpler training
- ▶ Stochastic spreading vs deterministic transport
- ▶ Entropy-regularized OT interpretation (Schrödinger bridge)

**State-of-the-Art:** DALL-E 2, Imagen, Stable Diffusion (1-2)

**extreme training stability, SOTA quality, more sampling steps**

# Summary

# PDE Framework for Generative Modeling



**Continuity Equation:**

$$\frac{\partial \rho_t}{\partial t} + \nabla \cdot (\rho_t v_t) = 0$$

$$\rho_0 = p_X, \quad \rho_1 = p_Z$$

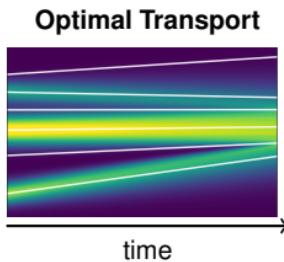
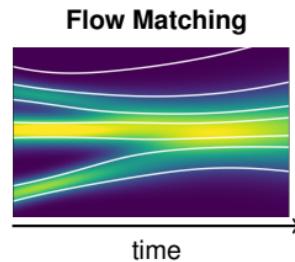
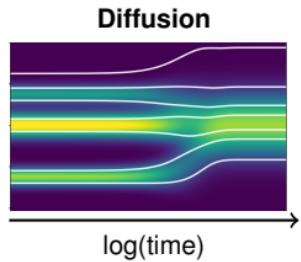
**Fokker-Planck Equation:**

$$\frac{\partial p_t}{\partial t} + \nabla \cdot (p_t v_t) = \frac{g^2(t)}{2} \Delta p_t$$

$$p_0 = p_X, \quad p_T \rightarrow \mathcal{N}(0, I)$$

**More to learn:** VAEs, GANs, other approaches

# $\Sigma$ : PDE Approaches for Generative Modeling



| Method     | PDE        | Optimal? | Train  | Sample      | Key Differentiator                               |
|------------|------------|----------|--------|-------------|--------------------------------------------------|
| CNF        | Continuity | No       | Slow   | Slow        | MLE with trace bottleneck                        |
| OT Flow    | Continuity | Yes      | Medium | <b>Fast</b> | Theory: $v = -\nabla\Phi$                        |
| Flow Match | Continuity | No       | Fast   | Fast        | no time integration, arbitrary $p_{\mathcal{Z}}$ |
| Diffusion  | Fokker-P   | No       | Fast   | Slow        | no time integration, SDE sampling                |

## Key Insights

- ▶ All satisfy transport PDEs (feasible), but only OT Flow is optimal
- ▶ **Holy grail:** Matching-type algorithms for the actual OT problem (active research)
- ▶ Tradeoff: Computational feasibility vs. theoretical optimality

# References I

-  Benamou, J.-D. and Y. Brenier (2000). "A Computational Fluid Mechanics Solution to the Monge-Kantorovich Mass Transfer Problem". In: *Numerische Mathematik* 84.3, pp. 375–393.
-  Chen, R. T. Q. et al. (2018). "Neural Ordinary Differential Equations". In: *Advances in Neural Information Processing Systems (NeurIPS)*. Vol. 31.
-  Lipman, Y. et al. (2023). "Flow Matching for Generative Modeling". In: *International Conference on Learning Representations (ICLR)*.
-  Onken, Derek et al. (2021). "OT-Flow: Fast and Accurate Continuous Normalizing Flows via Optimal Transport". In: *Proceedings of the AAAI Conference on Artificial Intelligence* 35.10, pp. 9223–9232.
-  Song, Y. et al. (2021). "Score-Based Generative Modeling through Stochastic Differential Equations". In: *International Conference on Learning Representations (ICLR)*.