@ 1ruthot@emory .edu Comp Math and Al @ 8 - High-Dim PDEs

Computational Mathematics and Al

Lecture 8: High-Dimensional PDEs

Lars Ruthotto

Departments of Mathematics and Computer Science

lruthotto@emory.edu

larsruthotto i
m &%

Xm)l

Title PDE PINNs FBSDE Exp SOC b References


https://linkedin.com/in/larsruthotto

’ﬂ lruthot@emory.edu Comp Math and Al @ 8 - High-Dim PDEs

Reading List

Historical Context: High-dimensional PDEs are abundant, curse of dimensionality
coined in optimal control (Bellman 1961).

Key Readings:

1. Han, Jentzen, and E (2018) — Solving High-Dimensional PDEs Using Deep
Learning. PNAS

Deep BSDE method breaking curse of dimensionality.

2. Raissi (2018) — Forward-Backward Stochastic Neural Networks. arXiv
FBSNNs for high-dimensional parabolic PDEs.

3. Hu et al. (2024) — Hutchinson Trace Estimation for PINNs. JMLR
Scaling PINNs to 100,000+ dimensions.

4. Li, Verma, and Ruthotto (2024) — Neural Network for Stochastic Optimal Control
SIAM SISC

Neural networks for high-dimensional control problems.

Lecture Outline: Model Problem — PINNs+HTE — FBSDE — PMP-informed
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High-Dimensional Semilinar Parabolic
PDE
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The Semilinear Parabolic PDE

We consider the semilinear parabolic PDE for « : [0, T] x R? — R:

% + p(t,x) - Vu+ %traoe ((TO'T Vzu) +f(t,x,u,0"Vu) =0, forte0,7T)

» u(T,x) = g(x) for x € R” — terminal condition at time T
> 1 :[0,7T] x RY — RY — drift coefficient

> o:[0,7T] x RY - R — diffusion coefficient

» f — nonlinear drift term, depends on « and Vu

Applications:
» Stochastic optimal control (Hamilton-Jacobi-Bellman equations)
» Financial mathematics (option pricing)
» Pattern formation and reaction-diffusion systems (Allen-Cahn equation)

»
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Example: HJB (Han, Jentzen, and E 2018; Raissi 2018)

% +Au—||Vul|* =0, for t€[0,7) u(T,x) = g(x)
Solution is the value function of the stochastic optimal control problem:
T
min E [g(XT) —1—/ L(Xs,as)ds}
0

acA

s.t. dX, = 2a,ds + \/EdWs, Xo==x

» Running cost: L(x,a) = ||a|?
> Terminal cost: g(x) = log (1 (1 + [|x[]%))
» Analytical solution (Hopf-Cole transform): u(z,x) = — log (E [exp(—g(X7)) | X; = x])
» Verify: Letv=e¢ Then 0y = —0u-v, Vv=—Vu-v, Av = (||Vu|* — Au)v.
HJB = 0,v = Av, i.e., v solves the heat equation!
» d = 100 is completely intractable for grid-based methods

Today: illustrate curse of dimensionality with four representative approaches
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9] lruthot@emory.edu

General Paradigm: NNs for High-Dimensional Control

Offline: Learn control (high computational cost)

1. Parameterize control/value function with neural net

2. Sample state space: uniform? random walk?

3. Define loss function: PDE residual, terminal matching, control objective, ...
4. Train weights via SGD, Adam, ...

Challenge: Avoid curse of dimensionality in network size, sample complexity, time

Online: Evaluate policy (very fast, real-time)

Evaluate trained policy and measure performance with control objective (can be
different from loss)

Today: Compare three neural approaches for high-D stochastic control
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PINNs with Hutchinson Trace Estimation
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PINNs for Semilinear Parabolic PDEs

Title

Idea: Parameterize uy(t, x) as a neural network
Loss function: Minimize expected PDE residual

L(8) = B [N [uo) (1, )

with PDE residual N'[u] = du + pu - Vu + itrace(oo ' VZu) + f
Computational challenge: Hessian Computation
For our PDE, we need trace(co ' V2u)
» Hessian matrix: d x d = 100 x 100 = 10,000 entries
» Computing full Hessian: O(d*) memory, O(d*) compute
» For d = 1000: Compute/memory becomes prohibitive

Problem: Standard PINNs fail at 4 > 1000 due to Hessian cost
Solution: Hutchinson Trace Estimation (HTE)

»
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The Hutchinson Trace Estimator
For our PDE: trace(co " V?u) = trace(o ' V2u o) = trace(A) where A = 0 ' V’uo

Hutchinson’s Trick (1990):
For any matrix A and random vector v with E[w'] = I

trace(A) = E[v' AV

Monte Carlo Approximation:
1 Vv
trace(A) ~ v ;:1 v; Av;

where v; ~ Rademacher (entries +1 with probability 1/2)

Using AD for Hessian-Vector Products (HVP)
» v "V2uov can be computed via autodiff in O(1) memory!
» Taylor-mode AD: forward-over-reverse differentiation

Result: O(d*) — O(1) memory/compute: enables PINNs in high dimensions!
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HTE-PINN: Where Does It Sample?
The HTE-PINN Learning Problem:

1 2
mein E/ 0,0 [Ottg + 1t - Vg + EVTO'TVZMQ ov+f

where (t,x) ~ Uniform([0, 7] x €2) and v ~ Rademacher(+1)
The Sampling Strategy:

» Sample (1, x;) uniformly from [0, 7] x €2

» Use mini-batch SGD/Adam

Discussion:
» does the added noise from HTE impact convergence?
» uniform sampling does not beat curse of dimensionality

Next: Exploit problem structure with relation to SDEs

»
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FBSDE-Based Methods

0] = PINNs

FBSDE

Exp eferences



Comp Math and Al @ 8 - High-Dim PDEs

PDE — SDE: Forward-Backward SDE System

1
% +p(t,x) - Vu+ 5trace (00" V2u) +f(t,x,u,0"Vu) =0, forte[0,T), u(T,x)=_gx)

Forward SDE: dX, = u(t,X,)dt + o(t,X,) dW,, Xy = x

What is the evolution of u(z, X,) along SDE trajectory? Ito’s lemma gives:

Ou

1
du(t, X,) = (8t + u(t,x) - Vu + Strace (00" Vzu)> dt + (V.u) o adw,

= —f(t, X, u,aTVu) dt + (qu)Ta dw,, u(T,Xr) = g(Xr)

T T
Backward SDE: Y, = g(X7) + / f(s,Xs, Y5, Zy) ds — / Z! dw;
t t

If (X,,Y,,Z) solves FBSDE system, then Y, = u(z,X,) and Z, = [o(t, X,)]" (V.u)(t,X;)

PDE
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Method 1: Deep BSDE (Han, Jentzen, and E 2018)

Key Idea: Optimize NN Approximation Z, and Y, Directly
» Learnable scalar Yy ~ u(0, Xj)
» Stack of N — 1 neural networks: Z,(X;) = Zy(#, X;) for each time step
» Each subnet: 4 layers, width d + 10, BatchNorm + ReLU

Loss Function (Terminal Matching):
£(0) = E ||y - g(xw)P
Where Yy is computed by simulating the FBSDE forward in time:

Xk—H =X + M([,Xk)At + o AW,
Yo=Y +f<t, X, u,Zk(Xk))At + Zk(Xk)TAWk

Gives only pointwise estimate of x(0, X;) at initial state!

»
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Method 2: Fwd/Bwd Stochastic NN (Raissi 2018)

Key Idea: Optimize NN approximation u,(z,x) using FBSDE Residuals
» Scalar-valued neural network uy(z,x) shared across all times
» Gradient V. uy via automatic differentiation
» Advantages over Deep BSDE: Parameter efficiency, can evaluate u, anywhere

Loss Function:

N—1
LO)=E ||Yy—gXn) +a > [Yipr — Yi+fildt — ZL AW, [
k=0

where Y, = M@(lk,Xk) and z, = JTqug(tk,Xk)

»
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> : PINNs, Deep BSDE, and FBSNN

Title

PINNs: Minimize PDE residual over domain
» In high-D: Use Hutchinson trace estimator for Hessian trace
» Sampling: Random collocation in [0, 7] x Q
Deep BSDE: Learn Y, and Z; per time step via terminal matching

> avoids Hessian computation by working with FBSDE
» Sampling: Forward SDE dX = u,dt + o, dW
» Optimization: Find Y, and Z; to minimize ||Yy — g(Xy)|?

FBSNN: Learn uy(t,x) via FBSDE residuals

> Advantage over Deep BSDE: single NN for all times, can evaluate anywhere
» Sampling: Forward SDE dX = u,dt + o, dW
» Optimization: Minimize residuals at each time step + terminal matching

Common disadvantage for HJB: Sampling independent of optimal control!

»
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Numerical Experiments
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100D HJB Benchmark: Results (Centered Target)

Training Loss Convergence: Trajectories (2D
10 T T ] —— projection):
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100D HJB Benchmark

—— 4+ Au—||Vul?=0, for t€[0,T) u(T,x)=gx)

Use terminal cost from literature: g(x) = log (3 (1 + [|x[|?)), i.e., Xarget = 0 € R'.
» Initial states: Xo ~ N(0,0.1%1;o0) (near origin)
» Terminal time: T = 1.0
» Ground truth: Monte Carlo with 10® samples

Method Relative Suboptimality | Training Time Status
PINNs + HTE <1% ~9 min v Success
FBSNN <1% ~17 min v Success

Why It Works:
» Random samples (collocation or random walk) stay near origin
» Minimizer of terminal cost is at origin = samples cover the important region!
» Network learns the value function where it matters

Both methods achieve <1% suboptimality in 100 dimensions!

FBSDE

»
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100D HJB Benchmark: Results (Shifted Target)

Tralnlng Loss Convergence: Trajectories (2D
projection):
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Modified 100D HJB Benchmark: Shifted Target

—% +Au—|Vul|* =0, for t€]0,7) u(T,x) = g(x)

Use modified terminal cost: g(x) = 10001log (1 (1 + [lx — 3[?)), i.e., xtarget = 3 € R'.

Method | Relative Suboptimality | Convergence | Status
PINNs 238% looks good x Fails
FBSNN 147% looks good x Fails

What Happened?
> Target distance: ||xiarget| = 3v/100 = 30
» Typical random walk distance: || X7| ~ v2-100 ~ 14
» Random collocation: uniform in bounded domain, misses far target
» Samples rarely reach the target region!

As suspected: Both methods FAIL when the target shifts far away!
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Neural SDEs for Stochastic Optimal
Control
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HJB and Pontryagin Maximum Principle

Consider the value function of the stochastic optimal control problem:

a

T
u(t,x) = min {IE [/ L(Xs,a5)ds+ g(Xr)|, st dX;=p(X;,a5)ds+odW, X, = x}
t

Key facts from optimal control theory:
1. HJB equation: The value function satisfies

—Ou+sup H(t,x, Vu,oVu,a) =0, u(T,x) = g(x)
where H(t,x,p,M,a) = itrace(cM) + p" pu(x,a) — L(x, a)
2. Feedback form (PMP): Optimal control is given by
a*(t,x) € argmax, H(t,x, Vu(t,x), cV?u(t, x), a)

For our HJB benchmark: L(x,a) = ||a|?, pu(x,a) = 2a, 0 = /2
= Optimal control: |a*(z,x) = —Vu(t,x)

Challenges: forward-backward structure, nonlinearity, high-dimensionality

»
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The Controlled Forward SDE
Key Insight: Use PMP to Define the Forward SDE

FBSDE Methods (earlier section) Neural SOC (This section)
Random walk: PMP-guided:
dX, = V2dW, dX, = —2Vu(t,X,) dt + V2 dW,
~—_————

2a

» Sampling independent of 6
» Trajectories don’t reach target
x Fails when target shifts!

» Sampling depends on 6
» Trajectories guided toward target
v Works for any target!

Consequence: The drift —2Vu, guides samples to low-cost regions.

What is the backward SDE along the controlled trajectory?

»
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1t6’'s Lemma: Deriving the Backward SDE

Setup: Let u solve the HIB: du + Au — ||Vul]> = 0, u(T,x) = g(x)
Consider u(t, X,) along the controlled trajectory: dX, = —2Vu(z,X,) dt + /2 dW,

Apply Ito’s lemma:
du(t,X,) = Oudt + Vu'dX, + %trace(Vzu 20 dt
= Qudt + Vu" (—2vu dt + /2 dW,) + Aud
= (O — 2| Vul? + Au) dt + V2Vu' aw,
Using HJB: 0,u + Au = ||Vu|?, we get:
O — 2||Vu|* + Au = || Vul* = 2| Vul* = —||Vul?

With a* = —Vu and running cost L = ||a*||* = || Vul*:

du(t,X,) = —L(X,,a*) dt + V2Vu' dW,

The backward SDE has drift = —(running cost)! Terminal: u(7,Xr) = g(Xr)

»
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Comparing: Random Walk vs. Controlled FBSDE

Random Walk FBSDE Controlled FBSDE

Forward: dX, = v/2dW, Forward: dX, = —2Vuy dt + /2 dW,
Backward: Backward:
dY, = +||Vu||*dt + Z," aw, dy, = —||\Vu|*dt + Z aw,
> Y,:M(Z,Xt),Z,:\/Evu > Yl:M(Z,Xt),Z,:\/EVM
» Drift is positive! » Drift is negative!
» Value increases along random paths » Value decreases by running cost
(drifting into high-cost regions) along optimal paths

Martingale verification: Define M, = Y, + [; Lds. Then dM, = Z] dW, (martingale!)

T
= u(0,x)=E [/ L(X,,a;)dt + g(Xr)| (control objective!)
0
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Why Random Sampling Methods Fail

What Went Wrong with PINNs, Deep BSDE, FBSNN?
» PINNs + HTE: Random collocation points in bounded domain
» Deep BSDE: Random walk dX = v/2dW
» FBSNN: Random walk dX = /2 dW

All ignore the optimal control structure of the problem!

The Solution: PMP-Informed Sampling

Instead of random sampling, use the controlled dynamics:

Benefits:

» Trajectories are guided toward optimal paths (even with crude initial uy)
» Backward SDE becomes simple: just integrates running cost
» Loss function directly measures control objective

We use the current network estimate to guide sampling!
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PMP-Informed Neural SDE Solver: The Training Loop

1. Initialize value network uy(z, x)
2. For each training iteration:
(a) Compute optimal control: a;(7,x) = —V,uy(t,x)
(b) Sample trajectories with PMP-guided drift:
Xiy1 = Xi + 2ap(te, Xi) At + V2A1 &, & ~ N(0,1)

(c) Compute loss:
N—1
LO)=E | ) L(Xiaf)At+ g(Xy) | + AusProg + ArPr + AvrPyr
k=0
(penalty terms enforce HJB and terminal conditions)
(d) Update 6 via gradient descent
3. Return trained network uy

Key Difference from Random-Sampling Methods:
» Trajectories are guided by current policy estimate
» Crude estimate initially, iterations pulls trajectories toward relevant regions
» Must backprop through the SDE! (X, depends on ¢ via aj)

0] =
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100D HJB Benchmark: Results Neural SOC (Centered)

Training Loss Convergence: Trajectories:
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100D HJB Benchmark: Results with Neural SOC (Shifted)

Tralnlng Loss Convergence: Trajectories:
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Results: PMP-Informed Succeeds Where Others Fail

Method Sampling Rel. Suboptimality Status
PINNs Random collocation 238% x Fails
FBSNN dX = ocdW 147% x Fails
Neural SOC | dX = —2Vuydt + o dW 1.2% v Success!

Three ingredients for solving high-dimensional HJB:
1. FBSDE reformulation (continuous-time dynamics)
2. Neural network approximation (meshfree representation)
3. Smart sampling (guided by current policy)

Title

0] = PINNs

FBSDE

Exp

»

SOC References




® lruthot@emory.edu Comp Math and Al @ 8 - High-Dim PDEs

Local vs. Global vs. Semi-global Solutions
Different types of solutions for optimal control:

» Local solution: Find optimal trajectory for one given initial state x

» Standard shooting methods, adjoint methods
» Must resolve for each new initial condition

» Global solution: Find optimal policy for all states (z,x) € [0, 7] x Q
» Requires solving HJB on full domain
» Curse of dimensionality: impossible for d > 1!
» Semi-global solution: Find policy that is optimal in the subset of state space
likely to be visited
» Realistic goal for high-dimensional problems
> Learn uy along (approximately) optimal trajectories
» Generalizes to nearby initial conditions

Key insight: PMP-informed sampling gives semi-global solutions!
You get good policies where you sample = sample where it matters!

»
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Outlook and Summary
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Outlook: Reinforcement Learning and HJBs

Reinforcement Learning for Control
» Alternative approach for solving (stochastic) optimal control problems
» Example: Actor-critic methods for games
» Only observations needed (of system and objective)
» Attractive when model is complex, incomplete, or unavailable
» Challenge: Sample efficiency (Scientific ML is not an Atari game!)

RL + HJB: Best of Both Worlds?
» Exploit that objective function is known (unlike pure RL)
» Learn control-affine dynamics model:

dX, = f,(t,X,) dt + B,(t,X,) a,dt + o dW,

with learnable parameters p
» Use model to estimate « and guide sampling — reduce sample complexity

HJB RL: Use structure when available, see Verma et al. 2024

»
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Outlook: HJB in Global Optimization

Goal: Find global minimum of non-convex f(x)

Algorithm:
1. Compute Moreau envelope:

_ 1
p(t,x) = minf (y) + - [|x — yl?
y t

2. Gradient descent: x;| = xx — aVo(ty, x¢)
3. Increase ¢ (smoothing parameter)
Key observation: ¢ solves Burgers-type HJB!

Op(t,x) + [Vt ) =0, ¢(0,x) = f(x)
Connection to this lecture: Add viscosity 6 > 0, use Cole-Hopf transform:
Vo(t,x) = =06V log1’(t, x)
Same sampling ideas apply. See Heaton, Fung, and Osher 2022

»
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Outlook: Mean Field Games and Control
Setup: Large population of interacting agents, each solving optimal control

Individual Agent: Population Level:
» State X, € RY, control a, » Density p(z,x) evolves via
» Dynamics depend on population Fokker-Planck
density p » Nash equilibrium: no agent wants to
» Cost depends on p (congestion, deviate
competition) » Limit of N-player game as N — o
Coupled PDE System:
HJB (backward): — Qu+ H(x,Vu,p) =0, u(T,x) = g(x, pr)

Fokker-Planck (forward): 0,0+ V - (pv*(x,Vu)) = Ap, p(0) = po

Neural Approaches: Similar ideas from today! (Ruthotto et al. 2020)
» Parameterize uy(t,x) and p,(z, x) with neural networks
» Avoid spatial grids — handle d = 100+ dimensions

Applications: crowd motion, traffic, finance, multi-agent RL, generative models

35
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>:: High-Dimensional Optimal Control

Title

Key Takeaways
» Three common approaches: PINNs+HTE, Deep BSDE, FBSNN
> All use neural approximation, no spatial grid, polynomial cost in d
> All succeed on “easy” problems (centered targets)
» Random sampling happens to cover the important region
» All fail when the target shifts!
» Random sampling misses the important region in high-D
» PMP-informed sampling succeeds where others fail
» Use optimal control structure; feedback loop improves sampling

Open Research Challenges
» Sampling for general semilinear PDEs
» HJB structure enables PMP-guided sampling — what about non-HJB?
» Avoiding time integration
» Flow matching: learn velocity field directly, skip SDE simulation?
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