
lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

Computational Mathematics and AI

Lecture 8: High-Dimensional PDEs

Lars Ruthotto
Departments of Mathematics and Computer Science

lruthotto@emory.edu
larsruthotto

slido.com #CBMS25

Title PDE PINNs FBSDE Exp SOC Σ References 1

https://linkedin.com/in/larsruthotto

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

Reading List

Historical Context: High-dimensional PDEs are abundant, curse of dimensionality
coined in optimal control (Bellman 1961).

Key Readings:
1. Han, Jentzen, and E (2018) – Solving High-Dimensional PDEs Using Deep

Learning. PNAS
Deep BSDE method breaking curse of dimensionality.

2. Raissi (2018) – Forward-Backward Stochastic Neural Networks. arXiv
FBSNNs for high-dimensional parabolic PDEs.

3. Hu et al. (2024) – Hutchinson Trace Estimation for PINNs. JMLR
Scaling PINNs to 100,000+ dimensions.

4. Li, Verma, and Ruthotto (2024) – Neural Network for Stochastic Optimal Control
SIAM SISC
Neural networks for high-dimensional control problems.

Lecture Outline: Model Problem → PINNs+HTE → FBSDE → PMP-informed

Title PDE PINNs FBSDE Exp SOC Σ References 2

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

High-Dimensional Semilinar Parabolic
PDE

Title PDE PINNs FBSDE Exp SOC Σ References 3

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

The Semilinear Parabolic PDE

We consider the semilinear parabolic PDE for u : [0, T]× Rd → R:

∂u
∂t

+ µ(t, x) · ∇u +
1
2

trace
(
σσ⊤ ∇2u

)
+ f (t, x, u, σ⊤∇u) = 0, for t ∈ [0,T)

▶ u(T, x) = g(x) for x ∈ Rd — terminal condition at time T
▶ µ : [0,T]× Rd → Rd — drift coefficient
▶ σ : [0, T]× Rd → Rd×d — diffusion coefficient
▶ f — nonlinear drift term, depends on u and ∇u

Applications:
▶ Stochastic optimal control (Hamilton-Jacobi-Bellman equations)
▶ Financial mathematics (option pricing)
▶ Pattern formation and reaction-diffusion systems (Allen-Cahn equation)

Title PDE PINNs FBSDE Exp SOC Σ References 4

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

Example: HJB (Han, Jentzen, and E 2018; Raissi 2018)

∂u
∂t

+∆u − ∥∇u∥2 = 0, for t ∈ [0,T) u(T, x) = g(x)

Solution is the value function of the stochastic optimal control problem:

min
a∈A

E
[

g(XT) +

∫ T

0
L(Xs, as) ds

]
s.t. dXs = 2as ds +

√
2 dWs, X0 = x

▶ Running cost: L(x, a) = ∥a∥2

▶ Terminal cost: g(x) = log
(

1
2

(
1 + ∥x∥2

))
▶ Analytical solution (Hopf-Cole transform): u(t, x) = − log (E [exp(−g(XT)) | Xt = x])
▶ Verify: Let v = e−u. Then ∂tv = −∂tu · v, ∇v = −∇u · v, ∆v = (∥∇u∥2 −∆u)v.

HJB ⇒ ∂tv = ∆v, i.e., v solves the heat equation!
▶ d = 100 is completely intractable for grid-based methods

Today: illustrate curse of dimensionality with four representative approaches
Title PDE PINNs FBSDE Exp SOC Σ References 5

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

General Paradigm: NNs for High-Dimensional Control

Offline: Learn control (high computational cost)

1. Parameterize control/value function with neural net
2. Sample state space: uniform? random walk?
3. Define loss function: PDE residual, terminal matching, control objective, . . .
4. Train weights via SGD, Adam, . . .

Challenge: Avoid curse of dimensionality in network size, sample complexity, time

Online: Evaluate policy (very fast, real-time)

Evaluate trained policy and measure performance with control objective (can be
different from loss)

Today: Compare three neural approaches for high-D stochastic control

Title PDE PINNs FBSDE Exp SOC Σ References 6

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

PINNs with Hutchinson Trace Estimation

Title PDE PINNs FBSDE Exp SOC Σ References 7

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

PINNs for Semilinear Parabolic PDEs

Idea: Parameterize uθ(t, x) as a neural network
Loss function: Minimize expected PDE residual

L(θ) = E(t,x) |N [uθ](t, x)|2

with PDE residual N [u] = ∂tu + µ · ∇u + 1
2 trace(σσ⊤∇2u) + f

Computational challenge: Hessian Computation
For our PDE, we need trace(σσ⊤∇2u)
▶ Hessian matrix: d × d = 100 × 100 = 10, 000 entries
▶ Computing full Hessian: O(d2) memory, O(d2) compute
▶ For d = 1000: Compute/memory becomes prohibitive

Problem: Standard PINNs fail at d > 1000 due to Hessian cost
Solution: Hutchinson Trace Estimation (HTE)

Title PDE PINNs FBSDE Exp SOC Σ References 8

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

The Hutchinson Trace Estimator
For our PDE: trace(σσ⊤∇2u) = trace(σ⊤∇2u σ) = trace(A) where A = σ⊤∇2u σ

Hutchinson’s Trick (1990):
For any matrix A and random vector v with E[vv⊤] = I:

trace(A) = E[v⊤Av]

Monte Carlo Approximation:

trace(A) ≈ 1
V

V∑
i=1

v⊤i Avi

where vi ∼ Rademacher (entries ±1 with probability 1/2)

Using AD for Hessian-Vector Products (HVP)
▶ v⊤σ⊤∇2u σv can be computed via autodiff in O(1) memory!
▶ Taylor-mode AD: forward-over-reverse differentiation

Result: O(d2) → O(1) memory/compute: enables PINNs in high dimensions!

Title PDE PINNs FBSDE Exp SOC Σ References 9

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

HTE-PINN: Where Does It Sample?
The HTE-PINN Learning Problem:

min
θ

E(t,x),v

∣∣∣∣∂tuθ + µ · ∇uθ +
1
2

v⊤σ⊤∇2uθ σv + f
∣∣∣∣2

where (t, x) ∼ Uniform([0, T]× Ω) and v ∼ Rademacher(±1)

The Sampling Strategy:
▶ Sample (ti, xi) uniformly from [0, T]× Ω

▶ Use mini-batch SGD/Adam

Discussion:
▶ does the added noise from HTE impact convergence?
▶ uniform sampling does not beat curse of dimensionality

Next: Exploit problem structure with relation to SDEs

Title PDE PINNs FBSDE Exp SOC Σ References 10

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

FBSDE-Based Methods

Title PDE PINNs FBSDE Exp SOC Σ References 11

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

PDE → SDE: Forward-Backward SDE System

∂u
∂t

+µ(t, x) ·∇u+
1
2

trace
(
σσ⊤∇2u

)
+ f (t, x, u, σ⊤∇u) = 0, for t ∈ [0,T), u(T, x) = g(x)

Forward SDE: dXt = µ(t,Xt) dt + σ(t,Xt) dWt, X0 = x0

What is the evolution of u(t,Xt) along SDE trajectory? Ito’s lemma gives:

du(t,Xt) =

(
∂u
∂t

+ µ(t, x) · ∇u +
1
2

trace
(
σσ⊤∇2u

))
dt + (∇xu)⊤σ dWt

= −f (t,Xt, u, σ⊤∇u) dt + (∇xu)⊤σ dWt, u(T,XT) = g(XT)

Backward SDE: Yt = g(XT) +

∫ T

t
f (s,Xs, Ys, Zs) ds −

∫ T

t
Z⊤

s dWs

If (Xt, Yt, Zt) solves FBSDE system, then Yt = u(t,Xt) and Zt = [σ(t,Xt)]
⊤(∇xu)(t,Xt)

Title PDE PINNs FBSDE Exp SOC Σ References 12

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

Method 1: Deep BSDE (Han, Jentzen, and E 2018)
Key Idea: Optimize NN Approximation Zθ and Y0 Directly
▶ Learnable scalar Y0 ≈ u(0,X0)

▶ Stack of N − 1 neural networks: Zk(Xk) = Zθ(tk,Xk) for each time step
▶ Each subnet: 4 layers, width d + 10, BatchNorm + ReLU

Loss Function (Terminal Matching):

L(θ) = E
[
|YN − g(XN)|2

]
Where YN is computed by simulating the FBSDE forward in time:

Xk+1 = Xk + µ(t,Xk)∆t + σ∆Wk

Yk+1 = Yk + f (t,Xk, u,Zk(Xk))∆t + Zk(Xk)
⊤∆Wk

Gives only pointwise estimate of u(0,X0) at initial state!

Title PDE PINNs FBSDE Exp SOC Σ References 13

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

Method 2: Fwd/Bwd Stochastic NN (Raissi 2018)

Key Idea: Optimize NN approximation uθ(t, x) using FBSDE Residuals
▶ Scalar-valued neural network uθ(t, x) shared across all times
▶ Gradient ∇xuθ via automatic differentiation
▶ Advantages over Deep BSDE: Parameter efficiency, can evaluate uθ anywhere

Loss Function:

L(θ) = E

[
|YN − g(XN)|2 + α

N−1∑
k=0

|Yk+1 − Yk + fk∆t − Z⊤
k ∆Wk|2

]

where Yk = uθ(tk,Xk) and Zk = σ⊤∇xuθ(tk,Xk)

Title PDE PINNs FBSDE Exp SOC Σ References 14

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

Σ : PINNs, Deep BSDE, and FBSNN

PINNs: Minimize PDE residual over domain
▶ In high-D: Use Hutchinson trace estimator for Hessian trace
▶ Sampling: Random collocation in [0,T]× Ω

Deep BSDE: Learn Y0 and Zk per time step via terminal matching
▶ avoids Hessian computation by working with FBSDE
▶ Sampling: Forward SDE dX = µtdt + σt dW
▶ Optimization: Find Y0 and Zk to minimize ∥YN − g(XN)∥2

FBSNN: Learn uθ(t, x) via FBSDE residuals
▶ Advantage over Deep BSDE: single NN for all times, can evaluate anywhere
▶ Sampling: Forward SDE dX = µtdt + σt dW
▶ Optimization: Minimize residuals at each time step + terminal matching

Common disadvantage for HJB: Sampling independent of optimal control!

Title PDE PINNs FBSDE Exp SOC Σ References 15

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

Numerical Experiments

Title PDE PINNs FBSDE Exp SOC Σ References 16

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

100D HJB Benchmark: Results (Centered Target)
Training Loss Convergence:

0 100 200 300 400 500 600 700 800 900 1,000

10−2

100

102

Iteration

Lo
ss

PINN

FBSNN

Suboptimality:

0 100 200 300 400 500 600 700 800 900 1,000
−0.05

0

0.05

0.1

Iteration

R
el

.S
ub

op
t.

(%
)

Trajectories (2D
projection):

All methods achieve < 1% suboptimality — target is at origin!
Title PDE PINNs FBSDE Exp SOC Σ References 17

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

100D HJB Benchmark

−∂u
∂t

+∆u − ∥∇u∥2 = 0, for t ∈ [0,T) u(T, x) = g(x)

Use terminal cost from literature: g(x) = log
(

1
2

(
1 + ∥x∥2

))
, i.e., xtarget = 0 ∈ R100.

▶ Initial states: X0 ∼ N (0, 0.12I100) (near origin)
▶ Terminal time: T = 1.0
▶ Ground truth: Monte Carlo with 106 samples

Method Relative Suboptimality Training Time Status

PINNs + HTE <1% ∼9 min ✓ Success

FBSNN <1% ∼17 min ✓ Success

Why It Works:
▶ Random samples (collocation or random walk) stay near origin
▶ Minimizer of terminal cost is at origin ⇒ samples cover the important region!
▶ Network learns the value function where it matters

Both methods achieve <1% suboptimality in 100 dimensions!
Title PDE PINNs FBSDE Exp SOC Σ References 18

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

100D HJB Benchmark: Results (Shifted Target)
Training Loss Convergence:

0 100 200 300 400 500 600 700 800 900 1,000

103

105

107

Iteration

Lo
ss

PINN

FBSNN

Suboptimality:

0 100 200 300 400 500 600 700 800 900 1,000
0

2

4

Iteration

R
el

.S
ub

op
t.

Trajectories (2D
projection):

PINN/FBSNN: Loss ↓ but suboptimality ̸↓!Title PDE PINNs FBSDE Exp SOC Σ References 19

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

Modified 100D HJB Benchmark: Shifted Target

−∂u
∂t

+∆u − ∥∇u∥2 = 0, for t ∈ [0,T) u(T, x) = g(x)

Use modified terminal cost: g(x) = 1000 log
(

1
2

(
1 + ∥x − 3∥2

))
, i.e., xtarget = 3 ∈ R100.

Method Relative Suboptimality Convergence Status

PINNs 238% looks good × Fails

FBSNN 147% looks good × Fails

What Happened?
▶ Target distance: ∥xtarget∥ = 3

√
100 = 30

▶ Typical random walk distance: ∥XT∥ ∼
√

2 · 100 ≈ 14
▶ Random collocation: uniform in bounded domain, misses far target
▶ Samples rarely reach the target region!

As suspected: Both methods FAIL when the target shifts far away!

Title PDE PINNs FBSDE Exp SOC Σ References 20

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

Neural SDEs for Stochastic Optimal
Control

Title PDE PINNs FBSDE Exp SOC Σ References 21

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

HJB and Pontryagin Maximum Principle
Consider the value function of the stochastic optimal control problem:

u(t, x) = min
a

{
E
[∫ T

t
L(Xs, as) ds + g(XT)

]
, s.t. dXs = µ(Xs, as) ds + σ dWs, Xt = x

}
Key facts from optimal control theory:

1. HJB equation: The value function satisfies

−∂tu + sup
a

H(t, x,∇u, σ∇2u, a) = 0, u(T, x) = g(x)

where H(t, x, p,M, a) = 1
2 trace(σM) + p⊤µ(x, a)− L(x, a)

2. Feedback form (PMP): Optimal control is given by

a∗(t, x) ∈ argmaxaH(t, x,∇u(t, x), σ∇2u(t, x), a)

For our HJB benchmark: L(x, a) = ∥a∥2, µ(x, a) = 2a, σ =
√

2
⇒ Optimal control: a∗(t, x) = −∇u(t, x)

Challenges: forward-backward structure, nonlinearity, high-dimensionality

Title PDE PINNs FBSDE Exp SOC Σ References 22

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

The Controlled Forward SDE
Key Insight: Use PMP to Define the Forward SDE

FBSDE Methods (earlier section)

Random walk:

dXt =
√

2 dWt

▶ Sampling independent of θ
▶ Trajectories don’t reach target
× Fails when target shifts!

Neural SOC (This section)

PMP-guided:

dXt = −2∇uθ(t,Xt)︸ ︷︷ ︸
2a

dt +
√

2 dWt

▶ Sampling depends on θ

▶ Trajectories guided toward target
✓ Works for any target!

Consequence: The drift −2∇uθ guides samples to low-cost regions.

What is the backward SDE along the controlled trajectory?

Title PDE PINNs FBSDE Exp SOC Σ References 23

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

Itô’s Lemma: Deriving the Backward SDE
Setup: Let u solve the HJB: ∂tu +∆u − ∥∇u∥2 = 0, u(T, x) = g(x)
Consider u(t,Xt) along the controlled trajectory: dXt = −2∇u(t,Xt) dt +

√
2 dWt

Apply Itô’s lemma:

du(t,Xt) = ∂tu dt +∇u⊤dXt +
1
2

trace(∇2u · 2I) dt

= ∂tu dt +∇u⊤
(
−2∇u dt +

√
2 dWt

)
+∆u dt

=
(
∂tu − 2∥∇u∥2 +∆u

)
dt +

√
2∇u⊤dWt

Using HJB: ∂tu +∆u = ∥∇u∥2, we get:

∂tu − 2∥∇u∥2 +∆u = ∥∇u∥2 − 2∥∇u∥2 = −∥∇u∥2

With a∗ = −∇u and running cost L = ∥a∗∥2 = ∥∇u∥2:

du(t,Xt) = −L(Xt, a∗
t) dt +

√
2∇u⊤dWt

The backward SDE has drift = −(running cost)! Terminal: u(T,XT) = g(XT)

Title PDE PINNs FBSDE Exp SOC Σ References 24

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

Comparing: Random Walk vs. Controlled FBSDE

Random Walk FBSDE
Forward: dXt =

√
2 dWt

Backward:

dYt = +∥∇u∥2 dt + Z⊤
t dWt

▶ Yt = u(t,Xt), Zt =
√

2∇u
▶ Drift is positive!
▶ Value increases along random paths

(drifting into high-cost regions)

Controlled FBSDE
Forward: dXt = −2∇uθ dt +

√
2 dWt

Backward:

dYt = −∥∇u∥2 dt + Z⊤
t dWt

▶ Yt = u(t,Xt), Zt =
√

2∇u
▶ Drift is negative!
▶ Value decreases by running cost

along optimal paths

Martingale verification: Define Mt = Yt +
∫ t

0 L ds. Then dMt = Z⊤
t dWt (martingale!)

⇒ u(0, x0) = E
[∫ T

0
L(Xt, a∗

t) dt + g(XT)

]
(control objective!)

Title PDE PINNs FBSDE Exp SOC Σ References 25

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

Why Random Sampling Methods Fail
What Went Wrong with PINNs, Deep BSDE, FBSNN?
▶ PINNs + HTE: Random collocation points in bounded domain
▶ Deep BSDE: Random walk dX =

√
2 dW

▶ FBSNN: Random walk dX =
√

2 dW
All ignore the optimal control structure of the problem!

The Solution: PMP-Informed Sampling
Instead of random sampling, use the controlled dynamics:

dXt = −2∇uθ(t,Xt) dt +
√

2 dWt

Benefits:
▶ Trajectories are guided toward optimal paths (even with crude initial uθ)
▶ Backward SDE becomes simple: just integrates running cost
▶ Loss function directly measures control objective

We use the current network estimate to guide sampling!

Title PDE PINNs FBSDE Exp SOC Σ References 26

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

PMP-Informed Neural SDE Solver: The Training Loop
1. Initialize value network uθ(t, x)
2. For each training iteration:

(a) Compute optimal control: a∗θ(t, x) = −∇xuθ(t, x)
(b) Sample trajectories with PMP-guided drift:

Xk+1 = Xk + 2a∗θ(tk,Xk)∆t +
√

2∆t ξk, ξk ∼ N (0, I)

(c) Compute loss:

L(θ) = E

[
N−1∑
k=0

L(Xk, a∗k)∆t + g(XN)

]
+ λHJBPHJB + λTPT + λ∇TP∇T

(penalty terms enforce HJB and terminal conditions)
(d) Update θ via gradient descent

3. Return trained network uθ

Key Difference from Random-Sampling Methods:
▶ Trajectories are guided by current policy estimate
▶ Crude estimate initially, iterations pulls trajectories toward relevant regions
▶ Must backprop through the SDE! (Xk depends on θ via a∗

θ)
Title PDE PINNs FBSDE Exp SOC Σ References 27

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

100D HJB Benchmark: Results Neural SOC (Centered)
Training Loss Convergence:

0 100 200 300 400 500 600 700 800 900 1,000
10−3

100

103

Iteration

Lo
ss

PINN

FBSNN

NeuralSOC

Suboptimality:

0 100 200 300 400 500 600 700 800 900 1,000
−0.05

0

0.05

0.1

Iteration

R
el

.S
ub

op
t.

(%
)

PINN

FBSNN

NeuralSOC

Trajectories:
FBSNN:

NeuralSOC:

All three methods succeed — NeuralSOC also achieves < 1% suboptimality!
Title PDE PINNs FBSDE Exp SOC Σ References 28

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

100D HJB Benchmark: Results with Neural SOC (Shifted)
Training Loss Convergence:

0 100 200 300 400 500 600 700 800 900 1,000

103

105

107

Iteration

Lo
ss

PINN

FBSNN

NeuralSOC

Suboptimality:

0 100 200 300 400 500 600 700 800 900 1,000
0

2

4

Iteration

R
el

.S
ub

op
t.

PINN

FBSNN

NeuralSOC

Trajectories:
FBSNN:

NeuralSOC:

NeuralSOC succeeds (< 1% subopt.) while PINN/FBSNN fail (> 100% subopt.)!
Title PDE PINNs FBSDE Exp SOC Σ References 29

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

Results: PMP-Informed Succeeds Where Others Fail

The Hard Case: xtarget = (3, . . . , 3)⊤ ∈ R100

Method Sampling Rel. Suboptimality Status

PINNs Random collocation 238% × Fails

FBSNN dX = σ dW 147% × Fails

Neural SOC dX = −2∇uθ dt + σ dW 1.2% ✓ Success!

Three ingredients for solving high-dimensional HJB:
1. FBSDE reformulation (continuous-time dynamics)
2. Neural network approximation (meshfree representation)
3. Smart sampling (guided by current policy)

Title PDE PINNs FBSDE Exp SOC Σ References 30

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

Local vs. Global vs. Semi-global Solutions
Different types of solutions for optimal control:

▶ Local solution: Find optimal trajectory for one given initial state x0

▶ Standard shooting methods, adjoint methods
▶ Must resolve for each new initial condition

▶ Global solution: Find optimal policy for all states (t, x) ∈ [0, T]× Ω
▶ Requires solving HJB on full domain
▶ Curse of dimensionality: impossible for d ≫ 1!

▶ Semi-global solution: Find policy that is optimal in the subset of state space
likely to be visited
▶ Realistic goal for high-dimensional problems
▶ Learn uθ along (approximately) optimal trajectories
▶ Generalizes to nearby initial conditions

Key insight: PMP-informed sampling gives semi-global solutions!
You get good policies where you sample ⇒ sample where it matters!

Title PDE PINNs FBSDE Exp SOC Σ References 31

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

Outlook and Summary

Title PDE PINNs FBSDE Exp SOC Σ References 32

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

Outlook: Reinforcement Learning and HJBs
Reinforcement Learning for Control
▶ Alternative approach for solving (stochastic) optimal control problems
▶ Example: Actor-critic methods for games
▶ Only observations needed (of system and objective)
▶ Attractive when model is complex, incomplete, or unavailable
▶ Challenge: Sample efficiency (Scientific ML is not an Atari game!)

RL + HJB: Best of Both Worlds?
▶ Exploit that objective function is known (unlike pure RL)
▶ Learn control-affine dynamics model:

dXt = fµ(t,Xt) dt + Bµ(t,Xt) at dt + σ dWt

with learnable parameters µ

▶ Use model to estimate u and guide sampling → reduce sample complexity

HJB RL: Use structure when available, see Verma et al. 2024

Title PDE PINNs FBSDE Exp SOC Σ References 33

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

Outlook: HJB in Global Optimization
Goal: Find global minimum of non-convex f (x)

Algorithm:
1. Compute Moreau envelope:

φ(t, x) = min
y

f (y) +
1
2t
∥x − y∥2

2. Gradient descent: xk+1 = xk − αk∇φ(tk, xk)

3. Increase t (smoothing parameter)

x

f

f (x)
φ(t, x)

Key observation: φ solves Burgers-type HJB!

∂tφ(t, x) + ∥∇φ(t, x)∥2 = 0, φ(0, x) = f (x)

Connection to this lecture: Add viscosity δ > 0, use Cole-Hopf transform:

∇φ(t, x) = −δ∇ log vδ(t, x)

Same sampling ideas apply. See Heaton, Fung, and Osher 2022

Title PDE PINNs FBSDE Exp SOC Σ References 34

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

Outlook: Mean Field Games and Control
Setup: Large population of interacting agents, each solving optimal control

Individual Agent:
▶ State Xt ∈ Rd, control at

▶ Dynamics depend on population
density ρ

▶ Cost depends on ρ (congestion,
competition)

Population Level:
▶ Density ρ(t, x) evolves via

Fokker-Planck
▶ Nash equilibrium: no agent wants to

deviate
▶ Limit of N-player game as N → ∞

Coupled PDE System:

HJB (backward): − ∂tu + H(x,∇u, ρ) = 0, u(T, x) = g(x, ρT)

Fokker-Planck (forward): ∂tρ+∇ · (ρ v∗(x,∇u)) = ∆ρ, ρ(0) = ρ0

Neural Approaches: Similar ideas from today! (Ruthotto et al. 2020)
▶ Parameterize uθ(t, x) and ρφ(t, x) with neural networks
▶ Avoid spatial grids → handle d = 100+ dimensions

Applications: crowd motion, traffic, finance, multi-agent RL, generative models

Title PDE PINNs FBSDE Exp SOC Σ References 35

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

Σ: High-Dimensional Optimal Control
Key Takeaways
▶ Three common approaches: PINNs+HTE, Deep BSDE, FBSNN

▶ All use neural approximation, no spatial grid, polynomial cost in d
▶ All succeed on “easy” problems (centered targets)

▶ Random sampling happens to cover the important region
▶ All fail when the target shifts!

▶ Random sampling misses the important region in high-D
▶ PMP-informed sampling succeeds where others fail

▶ Use optimal control structure; feedback loop improves sampling

Open Research Challenges
▶ Sampling for general semilinear PDEs

▶ HJB structure enables PMP-guided sampling — what about non-HJB?
▶ Avoiding time integration

▶ Flow matching: learn velocity field directly, skip SDE simulation?

Title PDE PINNs FBSDE Exp SOC Σ References 36

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

References I

Han, J., A. Jentzen, and W. E (2018). “Solving High-Dimensional Partial Differential
Equations Using Deep Learning”. In: Proceedings of the National Academy of
Sciences 115.34, pp. 8505–8510.
Heaton, Howard, Samy Wu Fung, and Stanley Osher (2022). Global Solutions to
Nonconvex Problems by Evolution of Hamilton-Jacobi PDEs. arXiv: 2202.11014
[math.OC]. URL: https://arxiv.org/abs/2202.11014.
Hu, Z., Z. Shi, G. E. Karniadakis, and K. Kawaguchi (2024). “Hutchinson Trace
Estimation for High-Dimensional and High-Order Physics-Informed Neural
Networks”. In: Computer Methods in Applied Mechanics and Engineering 424,
p. 116883.
Li, X., D. Verma, and L. Ruthotto (2024). “A Neural Network Approach for
Stochastic Optimal Control”. In: SIAM Journal on Scientific Computing 46.5,
A3094–A3117. DOI: 10.1137/23M155832X.
Raissi, M. (2018). “Forward-Backward Stochastic Neural Networks: Deep Learning
of High-Dimensional Partial Differential Equations”. In: arXiv preprint
arXiv:1804.07010.

Title PDE PINNs FBSDE Exp SOC Σ References 37

https://arxiv.org/abs/2202.11014
https://arxiv.org/abs/2202.11014
https://arxiv.org/abs/2202.11014
https://doi.org/10.1137/23M155832X

lruthot@emory.edu Comp Math and AI @ 8 - High-Dim PDEs

References II

Ruthotto, L., S. J. Osher, W. Li, L. Nurbekyan, and S. W. Fung (2020). “A Machine
Learning Framework for Solving High-Dimensional Mean Field Game and Mean
Field Control Problems”. In: Proceedings of the National Academy of Sciences
117.17, pp. 9183–9193.
Verma, Deepanshu, Nick Winovich, Lars Ruthotto, and
Bart van Bloemen Waanders (2024). Neural Network Approaches for
Parameterized Optimal Control. arXiv: 2402.10033 [math.OC]. URL:
https://arxiv.org/abs/2402.10033.

Title PDE PINNs FBSDE Exp SOC Σ References 38

https://arxiv.org/abs/2402.10033
https://arxiv.org/abs/2402.10033

	Title
	High-Dimensional Semilinar Parabolic PDE
	PINNs with Hutchinson Trace Estimation
	FBSDE-Based Methods
	Numerical Experiments
	Neural SDEs for Stochastic Optimal Control
	Outlook and Summary
	References

