

Computational Mathematics and AI

Lecture 9: Machine Learning for Inverse Problems

Lars Ruthotto

Departments of Mathematics and Computer Science

lruthotto@emory.edu

 [larsruthotto](https://www.linkedin.com/in/larsruthotto)

[slido.com #CBMS25](https://www.slido.com/#CBMS25)

Reading List

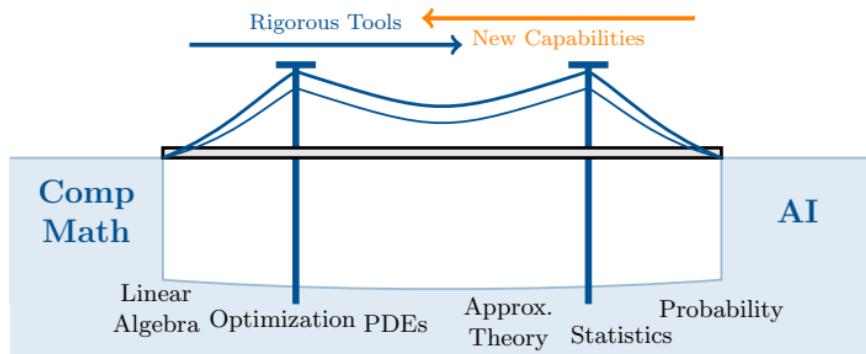
Historical Context: Inverse problems require regularization due to ill-posedness. Recent advances use diffusion priors and simulation-based inference.

Key Readings:

1. Antun et al. (2020) – On Instabilities of Deep Learning in Image Reconstruction. *PNAS*
Critical analysis of neural network stability in inverse problems.
2. Chung et al. (2023) – Diffusion Posterior Sampling for Inverse Problems. *ICLR*
Current state-of-the-art using diffusion priors.
3. Cranmer et al. (2020) – The Frontier of Simulation-Based Inference. *PNAS*
Likelihood-free Bayesian inference methods.
4. Wang et al. (2023) – Efficient Neural Approaches for Conditional OT.
arXiv:2310.16975
COT-Flow for fast posterior estimation.
5. Kawar et al. (2022) – Denoising Diffusion Restoration Models. *NeurIPS*
DDRM for linear inverse problems.

Outline: Ill-posedness → Bayesian → Simulation-Based Inference → Diffusion

Roadmap & Learning Objectives



Learning Objectives

1. Why direct neural networks fail catastrophically
2. Simulation-based inference for expensive simulators
3. Diffusion models as priors

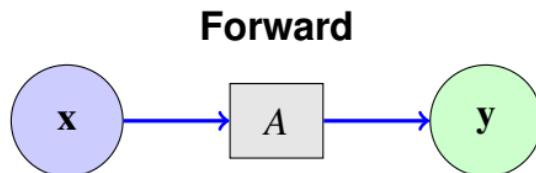
Roadmap

1. Inverse problems background
2. NN failure modes
3. Simulation-based inference (SBI)
4. Diffusion posterior sampling

Today: AI provides new opportunities for inverse problems

III-posed Inverse Problems

Forward vs. Inverse Problems



Forward Problem:

- ▶ Given parameters $\mathbf{x} \in \mathbb{R}^n$
- ▶ Predict observations $\mathbf{y} = \mathbf{A}(\mathbf{x}) + \epsilon$
- ▶ Well-posed, tractable

Inverse Problem:

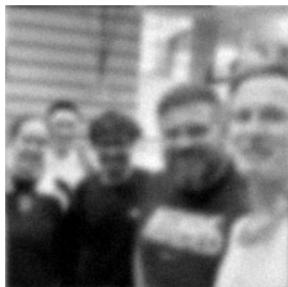
- ▶ Given observations $\mathbf{y} \in \mathbb{R}^m$
- ▶ Infer parameters \mathbf{x}
- ▶ Mathematically treacherous

Hadamard Well-Posedness Conditions

- ✓ **Existence:** Solution exists for all data
- ✓ **Uniqueness:** Solution is unique
- ✗ **Stability:** Small data changes \rightarrow small solution changes

ill-posed inverse problems are ubiquitous and known to be challenging

Motivating Example: Image Deblurring



Noisy Data

Key Observation

- ▶ Least squares solution amplifies noise (ill-posedness!)
- ▶ Early stopping provides implicit regularization
- ▶ Continuing optimization makes things **worse**

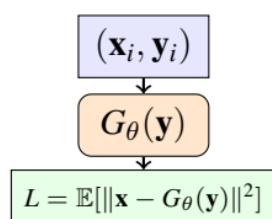
This Lecture

- ▶ Why direct neural networks fail catastrophically
- ▶ Generative AI for inverse problems

early stopping is implicit regularization for ill-posed problems

The Naive Approach: Directly Learning A^{-1}

Training Setup:



Network learns: $G_\theta \approx A^{-1}$

Why This Fails:

- ▶ The inverse A^{-1} is **unbounded** (ill-posed!)
- ▶ \Rightarrow Network inherits unbounded Lipschitz constant
- ▶ **Not a deep learning artifact**—this is *linear algebra*
- ▶ Even implicit regularization cannot overcome $\|A^{-1}\| = \infty$
- ▶ More data/better net \rightarrow better fit to **unstable map**

Key Insight (Hansen et al., 2021): Deep learning becomes unstable. Training on clean pairs teaches the network an unstable inverse map.

Takeaway from Direct Learning Failure

Three Critical Lessons

X Direct inverse learning does not overcome ill-posedness

- ▶ Network amplifies noise
- ▶ Training on clean data \neq robustness to noise

X No amount of data or architecture fixes instability

- ▶ More capacity \rightarrow worse instability (closer to A^{-1})
- ▶ Better data \rightarrow better fit to unstable map
- ▶ This is not a typical ML problem

✓ We need methods that acknowledge uncertainty

- ▶ Single point estimate is insufficient
- ▶ Multiple solutions may fit data equally well
- ▶ Uncertainty quantification is essential

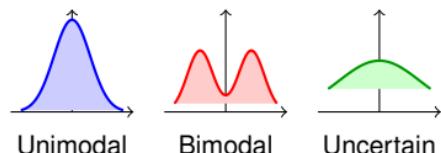
Bayesian Framework

The Bayesian Formulation

Posterior Distribution

$$\pi(\mathbf{x}|\mathbf{y}) \propto \underbrace{p(\mathbf{y}|\mathbf{x})}_{\text{likelihood}} \cdot \underbrace{\pi(\mathbf{x})}_{\text{prior}}$$

Postriors Reveal Structure



Components:

- ▶ **Likelihood** $p(\mathbf{y}|\mathbf{x})$: Forward model + noise
 - ▶ Gaussian: $p(\mathbf{y}|\mathbf{x}) \propto \exp(-\frac{1}{2\sigma^2} \|\mathbf{A}(\mathbf{x}) - \mathbf{y}\|^2)$
- ▶ **Prior** $\pi(\mathbf{x})$: What we (think we) know before seeing data
- ▶ **Posterior** $\pi(\mathbf{x}|\mathbf{y})$: Updated belief given data
- ▶ **Multi-modality**: Multiple valid solutions
- ▶ **Width**: Uncertainty in inference
- ▶ **Shape**: Guides decision-making

Advantages of Full Posteriors Over Just Point Estimates

- ▶ Ill-posedness \rightarrow non-uniqueness: multiple solutions fit data equally well
- ▶ Posterior width quantifies reliability; shapes guide different decisions

uncertainty is information, not failure—the full posterior matters

Classical Posterior Sampling Methods

MCMC (Markov Chain Monte Carlo):

- ▶ **Algorithm:** Construct Markov chain with stationary distribution $\pi(\mathbf{x}|\mathbf{y})$
- ▶ **Variants:** Metropolis-Hastings, Gibbs, HMC (Hamiltonian)
- ▶ **Cost:** 10^4 – 10^6 likelihood evaluations
- ▶ **Assumes:** Can evaluate $p(\mathbf{y}|\mathbf{x})$ pointwise
- ✓ Asymptotically exact
 - Slow mixing in high dimensions
 - Each step needs likelihood

Variational Inference (VI):

- ▶ **Algorithm:** Optimize $q_\varphi(\mathbf{x}) \approx \pi(\mathbf{x}|\mathbf{y})$ in parametric family
- ▶ **Objective:** Minimize reverse KL $KL(q\|\pi)$ via ELBO
- ▶ **Cost:** 10^3 – 10^5 gradient steps
- ▶ **Assumes:** Tractable family q_φ
 - Optimization
 - Approximation bias (may miss modes)
 - Still needs likelihood access

What if we can't evaluate the likelihood?

Forward model A is a black-box simulator (climate, turbulence, PDEs)
Each simulation: minutes to hours → MCMC/VI infeasible

Connection to Lecture 6: Generative Modeling

Recall Lecture 6

- ▶ Learned distributions of natural signals using diffusion models
- ▶ Score-based methods via Fokker-Planck PDE
- ▶ Generated samples from $p(\mathbf{x})$ (unconditional)

Lecture 9: Conditional Generation

- ▶ Use learned priors to solve inverse problems
- ▶ Sample from posterior $\pi(\mathbf{x}|\mathbf{y})$ (conditional on observations)
- ▶ Quantify uncertainty in reconstructions

Key Equation: Posterior Score Decomposition

$$\underbrace{\nabla_{\mathbf{x}} \log \pi(\mathbf{x}|\mathbf{y})}_{\text{posterior score}} = \underbrace{\nabla_{\mathbf{x}} \log \pi(\mathbf{x})}_{\text{prior (from L6)}} + \underbrace{\nabla_{\mathbf{x}} \log p(\mathbf{y}|\mathbf{x})}_{\text{likelihood (from } A\text{)}}$$

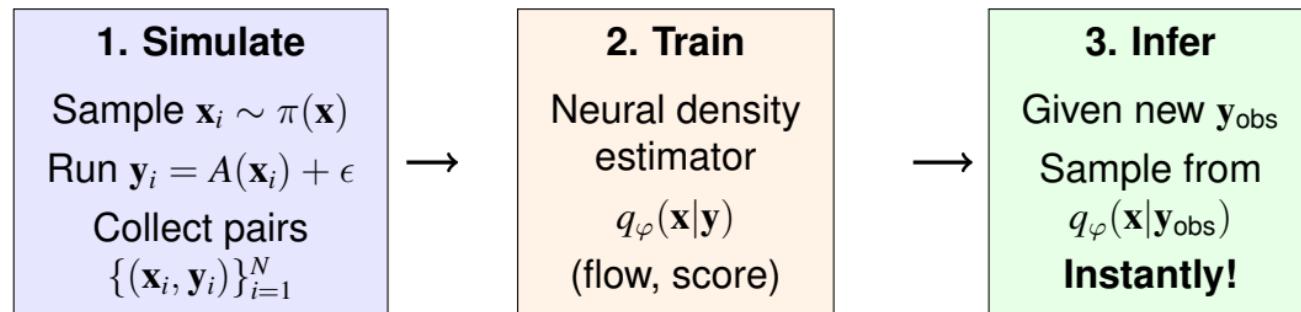
Modular Composition

- ▶ Pre-train prior $\pi(\mathbf{x})$ once on clean data
- ▶ Apply to many inverse problems with different forward models A
- ▶ No retraining needed for each new problem!

Simulation-Based Inference

Neural Posterior Estimation (NPE)

Core Idea: Learn $\pi(\mathbf{x}|\mathbf{y})$ Directly



Amortized Inference

- ▶ **Upfront cost:** Run N simulations, train neural network
- ▶ **Per-query cost:** Sample from $q_\varphi(\mathbf{x}|\mathbf{y})$ in milliseconds
- ▶ **Benefit:** Pay once, infer many times (different observations)

Sequential NPE (SNPE) Papamakarios et al. 2019; Greenberg et al. 2019

- ▶ Iteratively refine: simulate from current posterior estimate, retrain
- ▶ Converges in 3–5 rounds; $100\text{--}1000\times$ fewer simulations than MCMC
- ▶ Focuses computational budget on high-posterior regions

COT-Flow: Optimal Transport for Posterior Estimation

Goal: Learn posterior $\pi(\mathbf{x}|\mathbf{y})$ from samples
 $(\mathbf{x}, \mathbf{y}) \sim \pi(\mathbf{x}, \mathbf{y})$

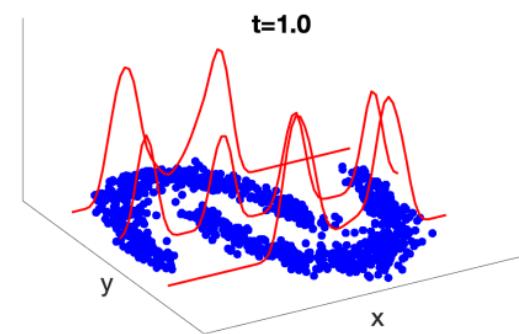
Recall from Lecture 6: OT-Flow learns generator $g_\theta : \mathcal{Z} \rightarrow \mathcal{X}$ via

- ▶ Neural ODE: $\frac{d\mathbf{u}}{dt} = v_\theta(t, \mathbf{u})$
- ▶ OT regularization: minimize kinetic energy
- ▶ Conservative velocity: $v_\theta = -\nabla \Phi_\theta$

Extension to Conditional Distributions:
 Train **conditional** generator $g_\theta(\mathbf{z}, \mathbf{y})$ such that

$$\pi(\mathbf{x}|\mathbf{y}) \approx \rho_Z(g_\theta^{-1}(\mathbf{x}, \mathbf{y})) \cdot |\det \nabla_{\mathbf{x}} g_\theta^{-1}(\mathbf{x}, \mathbf{y})|$$

Idea: condition velocity field on observation \mathbf{y}



Transport from prior ρ_Z to posterior $\pi(\mathbf{x}|\mathbf{y})$

COT-Flow: likelihood-free VI via OT-regularized flows

COT-Flow: Mean Field Game Formulation

Training Objective (OT-penalized maximum likelihood) Wang et al. 2023

$$\min_{\theta} \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \pi} \left[\underbrace{-\log q_{\theta}(\mathbf{x}|\mathbf{y})}_{\text{posterior fit}} + \underbrace{\alpha \int_0^1 \frac{1}{2} \|v_{\theta}(t, \mathbf{p}, \mathbf{y})\|^2 dt}_{\text{kinetic energy}} + \underbrace{\beta \left\| \partial_t \Phi + \frac{1}{2\alpha} \|\nabla_x \Phi\|^2 \right\|^2}_{\text{HJB penalty}} \right]$$

Hamilton-Jacobi-Bellman Equations (from optimal control)

$$\partial_t \Phi(t, \mathbf{x}, \mathbf{y}) - \frac{1}{2\alpha} \|\nabla_x \Phi(t, \mathbf{x}, \mathbf{y})\|^2 = 0$$

Implementation Strategy (extends OT-Flow from Lecture 6)

1. Learn scalar potential $\Phi_{\theta}(t, \mathbf{x}, \mathbf{y})$ with neural network
2. Use feedback form: $v_{\theta}(t, \mathbf{u}, \mathbf{y}) = -\frac{1}{\alpha} \nabla_x \Phi_{\theta}(t, \mathbf{u}, \mathbf{y})$
3. Explicit Laplacian: $\nabla \cdot v_{\theta} = -\frac{1}{\alpha} \Delta \Phi_{\theta}$ (efficient likelihood)
4. HJB penalty ($\beta > 0$) enforces optimality of transport paths

COT-Flow: Stochastic Lotka-Volterra Example

Problem Setup:

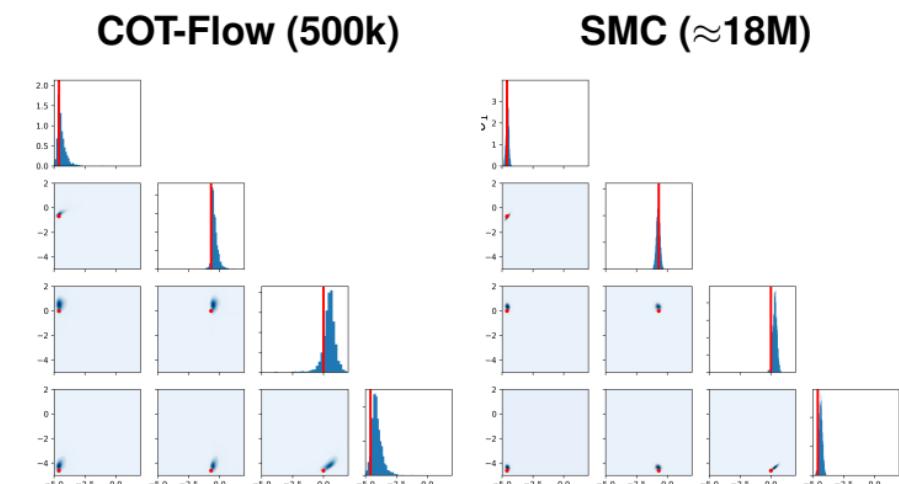
- ▶ Predator-prey dynamics
- ▶ $\mathbf{x} \in \mathbb{R}^4$: rate parameters
- ▶ $\mathbf{y} \in \mathbb{R}^9$: summary statistics

Sample Efficiency:

- ▶ SMC: $\approx 6\text{--}18\text{M}$ simulations
- ▶ COT-Flow: 50k–500k sims
- ▶ **30–100 \times speedup**

When to Use:

- ▶ Expensive PDE simulators
- ▶ Moderate dimensions ($d \leq 100$)
- ▶ Multi-modal posteriors



Posterior corner plots: diagonal = marginals, off-diagonal = 2D projections

COT-Flow matches SMC quality with 30–100 \times fewer simulations

Summary: Bayesian Methods for Inverse Problems

Three Approaches to Posterior Sampling

1. Classical MCMC/VI

- ▶ Requires likelihood access: can evaluate $p(\mathbf{y}|\mathbf{x})$
- ▶ Exact (asymptotically) but expensive: 10^5 – 10^6 evaluations
- ▶ Use when: likelihood cheap, moderate dimensions

2. Simulation-Based Inference (SBI/NPE)

- ▶ Likelihood-free: only need simulator $\mathbf{y} = A(\mathbf{x}) + \epsilon$
- ▶ Amortized: train once, infer many times instantly
- ▶ Use when: expensive black-box simulators

3. COT-Flow (forward-KL VI, likelihood-free)

- ▶ Best sample efficiency: 30 – $100\times$ fewer simulations
- ▶ Better mode coverage via optimal transport
- ▶ Use when: very expensive PDEs, multi-modal posteriors

Key Limitation: All SBI methods learn a **specific** posterior $\pi(\mathbf{x}|\mathbf{y})$

If forward operator A or prior $\pi(\mathbf{x})$ changes, **must retrain from scratch**

next: diffusion models offer a modular alternative

Diffusion Models for Inverse Problems

Score-Based Approach to Inverse Problems

Bayes' Theorem Becomes Additive for Scores

$$\underbrace{\nabla_{\mathbf{x}} \log \pi(\mathbf{x}|\mathbf{y})}_{\text{posterior score}} = \underbrace{\nabla_{\mathbf{x}} \log \pi(\mathbf{x})}_{\text{prior score}} + \underbrace{\nabla_{\mathbf{x}} \log p(\mathbf{y}|\mathbf{x})}_{\text{likelihood score}}$$

Prior Score (from L6):

- ▶ Learned by diffusion model: $s_{\theta}(\mathbf{x}, t)$
- ▶ Pre-trained once, reusable
- ▶ Encodes complex priors (natural images)

Likelihood Score (needed):

- ▶ Derived from forward model A
- ▶ Problem-specific
- ▶ Tweedie's formula

Key Advantage over SBI/COT-Flow: No retraining when A changes—modular composition at inference

Linear Gaussian Case: Exact Likelihood Score

The Challenge We need $\nabla_{\mathbf{x}_t} \log p(\mathbf{y}|\mathbf{x}_t)$, not at $t = 0$

At time t : $\mathbf{x}_t = \alpha_t \mathbf{x}_0 + \sigma_t \epsilon$ is noisy, but $\mathbf{y} = A\mathbf{x}_0 + \eta$ depends on clean \mathbf{x}_0

Marginalize Over \mathbf{x}_0

$$p(\mathbf{y}|\mathbf{x}_t) = \int p(\mathbf{y}|\mathbf{x}_0) p(\mathbf{x}_0|\mathbf{x}_t) d\mathbf{x}_0$$

Key insight: $p(\mathbf{x}_0|\mathbf{x}_t)$ is from the **Gaussian diffusion kernel** (not the prior!):

$$p(\mathbf{x}_0|\mathbf{x}_t) = \mathcal{N} \left(\frac{\mathbf{x}_t}{\alpha_t}, \frac{\sigma_t^2}{\alpha_t^2} I \right) \quad (\text{closed-form!})$$

Exact Score Kawar et al. 2022: Gaussian convolution $\Rightarrow p(\mathbf{y}|\mathbf{x}_t) = \mathcal{N}(\mathbf{y}; \bar{\boldsymbol{\mu}}_t, \bar{\boldsymbol{\Sigma}}_t)$

$$\nabla_{\mathbf{x}_t} \log p(\mathbf{y}|\mathbf{x}_t) = \frac{1}{\alpha_t} A^\top \bar{\boldsymbol{\Sigma}}_t^{-1} (\mathbf{y} - \bar{\boldsymbol{\mu}}_t) \quad \text{where } \bar{\boldsymbol{\mu}}_t = \frac{A\mathbf{x}_t}{\alpha_t}, \bar{\boldsymbol{\Sigma}}_t = \frac{\sigma_t^2}{\alpha_t^2} A A^\top + \sigma_\eta^2 I$$

linear + Gaussian: exact closed-form; general: requires approximation (DPS)

Diffusion Posterior Sampling (DPS) Chung et al. 2023

DPS Algorithm

Input: Observation \mathbf{y} , pre-trained score network $s_\theta(\mathbf{x}, t)$, forward model A

For $t = T, T-1, \dots, 1$:

1. **Predict clean image via conditional expectation (Tweedie's formula):**

$$\hat{\mathbf{x}}_0 = \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t] = (\mathbf{x}_t + \sigma_t^2 s_\theta(\mathbf{x}_t, t)) / \alpha_t$$

2. **Compute likelihood gradient:**

$$\nabla_{\mathbf{x}_t} \log p(\mathbf{y} | \mathbf{x}_t) \approx -\nabla_{\mathbf{x}_t} \|A(\hat{\mathbf{x}}_0) - \mathbf{y}\|^2$$

3. **Posterior sampling step:**

$$\mathbf{x}_{t-1} = \mu_t(\mathbf{x}_t) + \lambda \nabla_{\mathbf{x}_t} \log p(\mathbf{y} | \mathbf{x}_t) + g_t \epsilon$$

Output: Posterior sample $\mathbf{x}_0 \sim \pi(\mathbf{x} | \mathbf{y})$

Tweedie's Formula: Score \leftrightarrow Denoising

For noisy observation $\mathbf{x}_1 = \mathbf{x}_0 + \sigma\epsilon$ with $\epsilon \sim \mathcal{N}(0, I)$ Efron 2011 :

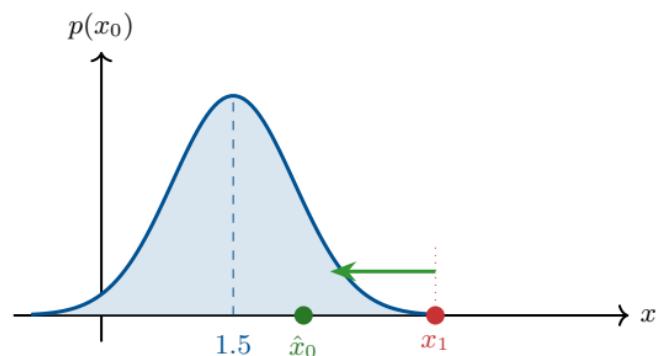
$$\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_1] = \mathbf{x}_1 + \sigma^2 \nabla_{\mathbf{x}_1} \log p(\mathbf{x}_1)$$

Intuition: Denoising via the Score

- ▶ Score $\nabla \log p(\mathbf{x}_1)$ points toward high-density regions of the prior
- ▶ σ^2 scales the correction:
 - ▶ Large σ (noisy) \rightarrow trust prior more
 - ▶ Small σ (clean) \rightarrow trust observation
- ▶ Best linear estimator for Gaussian prior

For Inverse Problems

- ▶ Score network gives $\hat{\mathbf{x}}_0 = \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]$
- ▶ Evaluate $A(\hat{\mathbf{x}}_0)$ for data fidelity



Tweedie: the bridge between score and denoised reconstruction

Example: DPS on a Gaussian Mixture Model

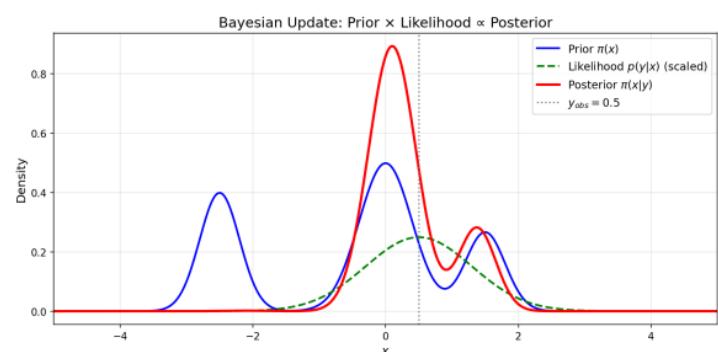
A Tractable Example Where Everything is Analytical

Prior: 3-component GMM

$$\pi(\mathbf{x}) = \sum_{k=1}^3 w_k \mathcal{N}(\mathbf{x}; \mu_k, \sigma_k^2)$$

- ▶ Means: $\mu = [-2.5, 0.0, 1.5]$
- ▶ Stds: $\sigma = [0.3, 0.4, 0.3]$, Weights:
 $w = [0.3, 0.5, 0.2]$

Likelihood: $p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{y}; \mathbf{x}, \sigma_y^2)$, $y_{\text{obs}} = 0.5$,
 $\sigma_y = 0.8$



Analytical Posterior (also a GMM!) — precision addition + evidence weighting

$$\tilde{\sigma}_k^2 = \frac{\sigma_k^2 \sigma_y^2}{\sigma_k^2 + \sigma_y^2}, \quad \tilde{\mu}_k = \tilde{\sigma}_k^2 \left(\frac{\mu_k}{\sigma_k^2} + \frac{y_{\text{obs}}}{\sigma_y^2} \right), \quad \tilde{w}_k \propto w_k \cdot \mathcal{N}(y_{\text{obs}}; \mu_k, \sigma_k^2 + \sigma_y^2)$$

key insight: mode at $x = -2.5$ nearly eliminated ($\tilde{w}_1 \approx 0.001$)

Score Functions for the GMM

Score of a Gaussian Mixture

For GMM $p(\mathbf{x}) = \sum_k w_k \varphi_k(\mathbf{x})$ where $\varphi_k = \mathcal{N}(\mathbf{x}; \mu_k, \sigma_k^2)$:

$$\nabla_{\mathbf{x}} \log p(\mathbf{x}) = \frac{\sum_k w_k \nabla_{\mathbf{x}} \varphi_k(\mathbf{x})}{\sum_k w_k \varphi_k(\mathbf{x})} = - \sum_k r_k(\mathbf{x}) \frac{\mathbf{x} - \mu_k}{\sigma_k^2}$$

where **responsibility** $r_k(\mathbf{x}) = \frac{w_k \varphi_k(\mathbf{x})}{\sum_j w_j \varphi_j(\mathbf{x})}$ is soft assignment to component k

Time-Evolved Marginal at Time t

Under VP diffusion: $\mathbf{x}_t = \alpha_t \mathbf{x}_0 + \sigma_t \epsilon$, the marginal is also a GMM:

$$p_t(\mathbf{x}_t) = \sum_k w_k \mathcal{N}(\mathbf{x}_t; \alpha_t \mu_k, \alpha_t^2 \sigma_k^2 + \sigma_t^2)$$

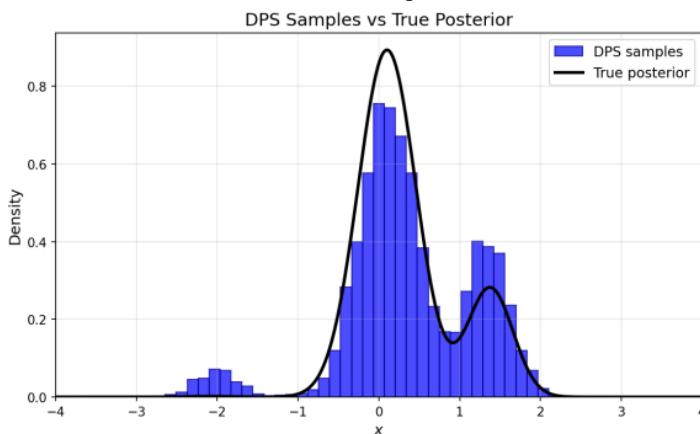
Same Formula, Time-Evolved Parameters

$$\nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t) = - \sum_k r_k^{(t)}(\mathbf{x}_t) \frac{\mathbf{x}_t - \alpha_t \mu_k}{\alpha_t^2 \sigma_k^2 + \sigma_t^2}$$

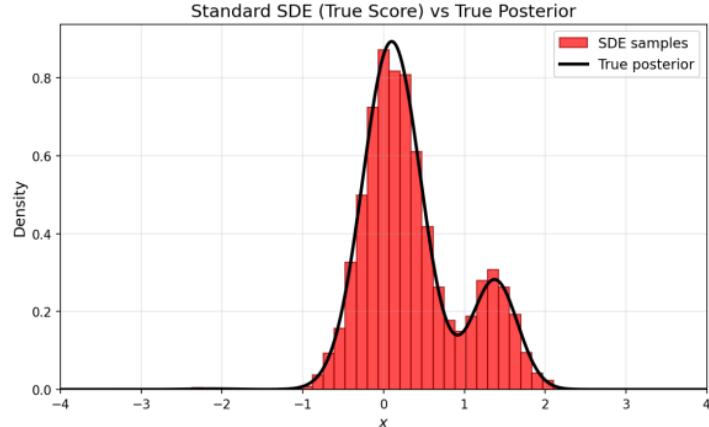
GMM score can be computed analytically. No training/approximation required!

Visual Comparison: DPS vs True Posterior Sampling

DPS Samples



True Posterior Score

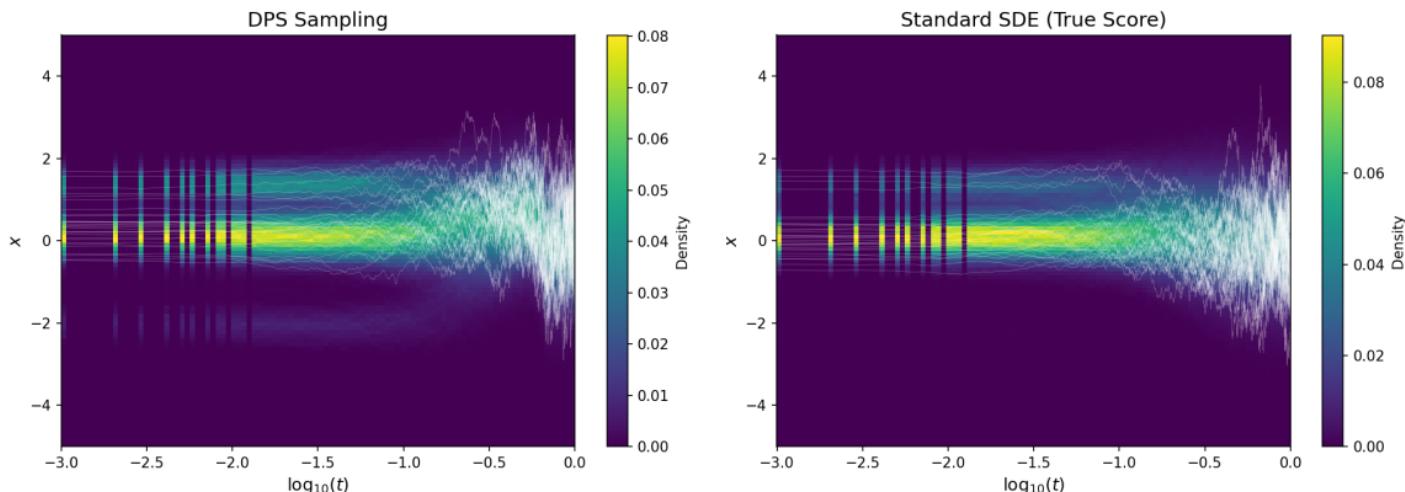


Key Observations

- ▶ True SDE (red): matches posterior perfectly (validates implementation)
- ▶ DPS (blue): **spurious samples near $x \approx -2$** (should be $\approx 0.1\%$!)
- ▶ DPS std = 0.82 vs true std = 0.62 (**32% inflation**)

DPS over-represents unlikely modes due to delayed guidance

Spacetime Evolution: When Does DPS Fail?



Timeline of Failure (read right to left: $t = 1 \rightarrow t = 0$)

- ▶ **Large t** : Both start from $\mathcal{N}(0, 1)$ —identical
- ▶ **Medium t** : True SDE suppresses $x \approx -2$ mode; DPS doesn't
- ▶ **Small t** : Too late—DPS trajectories “stuck” near wrong mode

DPS lacks early mode discrimination \rightarrow wrong final distribution

Why DPS Fails: The Approximation Problem \star

True posterior score at time t : $\nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t | \mathbf{y}) = \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t) + \nabla_{\mathbf{x}_t} \log p_t(\mathbf{y} | \mathbf{x}_t)$

The problem: We know $p(\mathbf{y} | \mathbf{x}_0)$, but need $p_t(\mathbf{y} | \mathbf{x}_t) = \int p(\mathbf{y} | \mathbf{x}_0) p(\mathbf{x}_0 | \mathbf{x}_t) d\mathbf{x}_0$

DPS Approximation: Replace integral with **point estimate** via Tweedie

$$\hat{\mathbf{x}}_0 = \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t] = \frac{\mathbf{x}_t + \sigma_t^2 \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t)}{\alpha_t} \quad \Rightarrow \quad \nabla_{\mathbf{x}_t} \log p_t(\mathbf{y} | \mathbf{x}_t) \approx \frac{1}{\alpha_t} \nabla_{\hat{\mathbf{x}}_0} \log p(\mathbf{y} | \hat{\mathbf{x}}_0)$$

Why This Fails (recall: $\alpha_t \rightarrow 0$ as $t \rightarrow 1$, i.e., early in reverse process):

- ▶ **Multi-modal posterior:** $\hat{\mathbf{x}}_0$ may lie *between* modes \rightarrow spurious $x \approx -2$ samples
- ▶ **Early guidance unstable:** α_t small $\rightarrow 1/\alpha_t$ explodes \rightarrow must disable guidance \rightarrow miss mode discrimination (spacetime plot!)

Point estimate + delayed guidance \rightarrow wrong mode weights! Better estimators needed!

Summary

Σ : Inverse Problems and AI

III-Posed Inverse Problems

- ▶ Direct inverse learning fails: no rescue from data/architecture
- ▶ Regularization needed: encode prior knowledge to stabilize

Bayesian Framework

- ▶ Uncertainty is information: multi-modal posteriors reveal non-uniqueness
- ▶ Posterior enables better decisions than point estimates

Simulation-Based Inference

- ▶ Amortized inference: pay training cost once, get fast posteriors
- ▶ Requires many training samples (forward simulations)
- ▶ COT-Flow: 30-100 \times reduction for expensive PDE simulators

Diffusion Posteriors

- ▶ Not amortized: runs full diffusion process per sample
- ▶ Score additivity enables modular composition (prior + likelihood)
- ▶ **Challenge:** Good approximation of score of likelihood needed

Σ : Other Open Challenges

Fast Diffusion Sampling

- ▶ Goal: 5-10 steps instead of 1000 (consistency models, distillation)
- ▶ Enables real-time clinical applications

Robustness and Model Misspecification

- ▶ What happens when prior/likelihood are wrong?
- ▶ Domain shift, out-of-distribution, uncertainty about uncertainty

Physics-Informed Generative Models

- ▶ Combine PDE constraints with learned priors
- ▶ Hard constraints vs soft penalties; conservation laws

References I

- Antun, Vegard et al. (2020). "On instabilities of deep learning in image reconstruction and the potential costs of AI". In: *Proceedings of the National Academy of Sciences* 117.48, pp. 30088–30095. DOI: [10.1073/pnas.1907377117](https://doi.org/10.1073/pnas.1907377117).
- Chung, H. et al. (2023). "Diffusion Posterior Sampling for General Noisy Inverse Problems". In: *International Conference on Learning Representations (ICLR)*.
- Cranmer, K. et al. (2020). "The Frontier of Simulation-Based Inference". In: *Proceedings of the National Academy of Sciences* 117.48, pp. 30055–30062.
- Efron, Bradley (2011). "Tweedie's Formula and Selection Bias". In: *Journal of the American Statistical Association* 106.496, pp. 1602–1614. DOI: [10.1198/jasa.2011.tm11181](https://doi.org/10.1198/jasa.2011.tm11181).
- Greenberg, David S. et al. (2019). "Automatic Posterior Transformation for Likelihood-Free Inference". In: *International Conference on Machine Learning (ICML)*, pp. 2404–2414.
- Kawar, B. et al. (2022). "Denoising Diffusion Restoration Models". In: *Advances in Neural Information Processing Systems (NeurIPS)*. Vol. 35, pp. 23593–23606.

References II

- Papamakarios, G. et al. (2019). “Sequential Neural Likelihood: Fast Likelihood-Free Inference with Autoregressive Flows”. In: *International Conference on Artificial Intelligence and Statistics (AISTATS)*, pp. 837–848.
- Wang, Z. O. et al. (2023). “Efficient Neural Network Approaches for Conditional Optimal Transport with Applications in Bayesian Inference”. In: *arXiv preprint arXiv:2310.16975*.