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Reading List

Historical Context: Inverse problems require regularization due to ill-posedness.
Recent advances use diffusion priors and simulation-based inference.

Key Readings:

1. Antun et al. (2020) — On Instabilities of Deep Learning in Image Reconstruction.
PNAS
Critical analysis of neural network stability in inverse problems.

2. Chung et al. (2023) — Diffusion Posterior Sampling for Inverse Problems. ICLR
Current state-of-the-art using diffusion priors.

3. Cranmer et al. (2020) — The Frontier of Simulation-Based Inference. PNAS
Likelihood-free Bayesian inference methods.

4. Wang et al. (2023) — Efficient Neural Approaches for Conditional OT.
arXiv:2310.16975
COT-Flow for fast posterior estimation.

5. Kawar et al. (2022) — Denoising Diffusion Restoration Models. NeurlPS

DDRM for linear inverse problems.

Outline: lll-posedness — Bayesian — Simulation-Based Inference — Diffusion

IP
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Roadmap & Learning Objectives

. &
Rigorous Tools € . R
3> New Capabilities

=D

Comp
Math Gl

Linear s
Algebra Optimization ppps ~ SPPr*: Probability

Theory Statistics
Learning Objectives Roadmap
1. Why direct neural networks fail 1. Inverse problems background
catastrophically 2. NN failure modes
2. Simulation-based inference for 3. Simulation-based inference (SBI)

expensive simulators 4. Diffusion posterior sampling
3. Diffusion models as priors

Today: Al provides new opportunities for inverse problems
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Forward vs. Inverse Problems

Forward Problem:
Forward » Given parameters x € R”
> Predict observations y = A(x) + ¢
@—> A *’@ » Well-posed, tractable
Inverse Problem:
» Given observations y € R™

» Infer parameters x
» Mathematically treacherous

Hadamard Well-Posedness Conditions
v Existence: Solution exists for all data
v Uniqueness: Solution is unique
X Stability: Small data changes — small solution changes

ill-posed inverse problems are ubiquitous and known to be challenging

b3}

IP
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Motivating Example: Image Deblurring

DA

Title

Noisy Data

Key Observation
» Least squares solution amplifies noise (ill-posedness!)
» Early stopping provides implicit regularization
» Continuing optimization makes things worse

This Lecture
» Why direct neural networks fail catastrophically
» Generative Al for inverse problems

early stopping is implicit regularization for ill-posed problems

»

RECICHES

Diffusion

Intro IP Bayes SBI
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The Naive Approach: Directly Learning A~

Ground Truth Noisy Data NN Recon Early Stopped

= |

Training Setup: Why This Fails:

» The inverse A~! is unbounded (ill-posed!)
(i, i) » = Network inherits unbounded Lipschitz constant
Go(y) » Not a deep learning artifact—this is linear algebra
‘L: E[||x — Go(y)|I] ‘ » Even implicit regularization cannot overcome
IA=] = o0
Network learns: Gy ~ A~! » More data/better net — better fit to unstable map

Key Insight (Hansen et al., 2021): Deep learning becomes unstable. Training
on clean pairs teaches the network an unstable inverse map.

Title IP

b3}
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Takeaway from Direct Learning Failure

Three Critical Lessons

X Direct inverse learning does not overcome ill-posedness

» Network amplifies noise
» Training on clean data # robustness to noise

X No amount of data or architecture fixes instability
» More capacity — worse instability (closer to A=)
> Better data — better fit to unstable map
» This is not a typical ML problem

v We need methods that acknowledge uncertainty
> Single point estimate is insufficient
» Multiple solutions may fit data equally well
» Uncertainty quantification is essential

b3}
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The Bayesian Formulation

Posterior Distribution Posteriors Reveal Structure

likelihood  prior

Unimodal Bimodal Uncertain

Components:
» Likelihood p(y|x): Forward model + noise > Multi-modality: Multiple valid
> Gaussian: p(y[x) o exp(— 35 [|A(x) — y|?) solutions

» Prior 7(x): What we (think we) know
before seeing data
» Posterior 7(x|y): Updated belief given > Shape: Guides decision-making
data
Advantages of Full Posteriors Over Just Point Estimates
» lll-posedness — non-uniqueness: multiple solutions fit data equally well
» Posterior width quantifies reliability; shapes guide different decisions

» Width: Uncertainty in inference

uncertainty is information, not failure—the full posterior matters

Title Intro IP Bayes SBI Diffusion P References
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Classical Posterior Sampling Methods

MCMC (Markov Chain Monte Carlo): Variational Inference (VI):

» Algorithm: Construct Markov chain » Algorithm: Optimize g, (x) ~ 7(x]y)
with stationary distribution 7(x|y) in parametric family

» Variants: Metropolis-Hastings, » Objective: Minimize reverse KL
Gibbs, HMC (Hamiltonian) KL(g||r) via ELBO

» Cost: 10*-10° likelihood evaluations » Cost: 10°-10° gradient steps

» Assumes: Can evaluate p(y|x) » Assumes: Tractable family ¢,
pointwise — Optimization

v Asymptotically exact — Approximation bias (may miss

— Slow mixing in high dimensions modes)

— Each step needs likelihood — Still needs likelihood access

What if we can’t evaluate the likelihood?

Forward model A is a black-box simulator (climate, turbulence, PDEs)
Each simulation: minutes to hours — MCMC/VI infeasible

Title IP
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Connection to Lecture 6: Generative Modeling

Recall Lecture 6
» Learned distributions of natural signals using diffusion models
» Score-based methods via Fokker-Planck PDE
» Generated samples from p(x) (unconditional)

Lecture 9: Conditional Generation
» Use learned priors to solve inverse problems
» Sample from posterior 7(x|y) (conditional on observations)
» Quantify uncertainty in reconstructions

Key Equation: Posterior Score Decomposition
yx log W(x\yl = yx log ’/T(XZ + yx logp(y]xz

-~

posterior score prior (from L6) likelihood (from A)

Modular Composition
» Pre-train prior 7(x) once on clean data
» Apply to many inverse problems with different forward models A
» No retraining needed for each new problem!

Intro IP Bayes SBI Diffusion P References
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Simulation-Based Inference
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Neural Posterior Estimation (NPE)

Core ldea: Learn 7(x|y) Directly

1. Simulate 2. Train 3. Infer
Sample x; ~ 7(x) Neural density Given new ygps
Runy, =A(x;) +e | — estimator — | Sample from

Collect pairs g (X[y) 4 (X|Yobs)

{(x,y:) Y, (flow, score) Instantly!

Amortized Inference
» Upfront cost: Run N simulations, train neural network
> Per-query cost: Sample from ¢, (x|y) in milliseconds
» Benefit: Pay once, infer many times (different observations)

Sequential NPE (SNPE) Papamakarios et al. 2019; Greenberg et al. 2019
> lteratively refine: simulate from current posterior estimate, retrain
» Converges in 3-5 rounds; 100—1000 x fewer simulations than MCMC
» Focuses computational budget on high-posterior regions

b3}
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COT-Flow: Optimal Transport for Posterior Estimation

Goal: Learn posterior 7(x]y) from samples
(x,y) ~ 7(x,y)
Recall from Lecture 6: OT-Flow learns
generator g, : Z — X via
> Neural ODE: & = yy(z,u)
» OT regularization: minimize kinetic energy
» Conservative velocity: vp = —V &y

Extension to Conditional Distributions:
Train conditional generator gy(z,y) such that

T(x|y) = pz(gy ' (x,y)) - | det Vig, ' (x,¥)]

Transport from prior pz to posterior 7(x|y)

Idea: condition velocity field on observation y

COT-Flow: likelihood-free VI via OT-regularized flows
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COT-Flow: Mean Field Game Formulation
Training Objective (OT-penalized maximum likelihood) Wang et al. 2023

1 2
at@ + _||Vx¢)||2
2o

1
) 1
min B gyon | — 08 go(xly) +a / Lot p. )Pt +3
2] \—v—/ \O 2 ,

posterior fit ~~ ~~
kinetic energy HJB penalty

N

Hamilton-Jacobi-Bellman Equations (from optimal control)

1
8I(I)<t>x7y) - £‘|VX<D(I7X7Y)”2 =0

Implementation Strategy (extends OT-Flow from Lecture 6)
1. Learn scalar potential ®,(z,x,y) with neural network
2. Use feedback form: vy(t,u,y) = =1V, ®y(z, u,y)
3. Explicit Laplacian: V - vy = —LA®, (efficient likelihood)
4. HJB penalty (8 > 0) enforces optimality of transport paths

b3}
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COT-Flow: Stochastic Lotka-Volterra Example

Problem Setup:
» Predator-prey dynamics
> x € R*: rate parameters COT-Flow (500k) SMC (~18M)
> y € R’: summary statistics o
Sample Efficiency: ZEL
» SMC: ~6—-18M simulations
» COT-Flow: 50k—-500k sims

> 30-100x speedup f' : “ '

When to Use: . m . “
» Expensive PDE simulators g S i S A A ' W () SR f S P S

> Moderate dimensions Posterior corner plots: diagonal = marginals, off-diagonal = 2D projections
(d < 100)

» Multi-modal posteriors

COT-Flow matches SMC quality with 30—100x fewer simulations

SBI

b3}

IP
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Summary: Bayesian Methods for Inverse Problems

Three Approaches to Posterior Sampling

1. Classical MCMC/VI
> Requires likelihood access: can evaluate p(y|x)
» Exact (asymptotically) but expensive: 10—-10° evaluations
» Use when: likelihood cheap, moderate dimensions

2. Simulation-Based Inference (SBI/NPE)
> Likelihood-free: only need simulatory = A(x) + ¢
» Amortized: train once, infer many times instantly
» Use when: expensive black-box simulators

3. COT-Flow (forward-KL VI, likelihood-free)
> Best sample efficiency: 30—100x fewer simulations
» Better mode coverage via optimal transport
> Use when: very expensive PDEs, multi-modal posteriors

Key Limitation: All SBI methods learn a specific posterior 7(x|y)
If forward operator A or prior 7(x) changes, must retrain from scratch

next: diffusion models offer a modular alternative

Title Intro IP Bayes SBI Diffusion P References
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Score-Based Approach to Inverse Problems

Bayes’ Theorem Becomes Additive for Scores

Vylogm(x]y) = Vylogm(x) + Vi log p(y|x)

posterior score prior score Iikelihoz)fj score
Prior Score (from L6): Likelihood Score (needed):
» Learned by diffusion model: sy(x, ) » Derived from forward model A
» Pre-trained once, reusable » Problem-specific
» Encodes complex priors (natural » Tweedie’s formula

images)
Key Advantage over SBI/COT-Flow: No retraining when A changes—modular
composition at inference
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Linear Gaussian Case: Exact Likelihood Score
The Challenge We need Vy, logp(y|x,), notatr =0

At time 7: x, = a,xo + 0,€ IS noisy, but y = Ax, + 1 depends on clean x,
Marginalize Over x,

p(yI%) = / p(¥/%0) p(Xol,) do

Key insight: p(xo|x,) is from the Gaussian diffusion kernel (not the prior!):

2
p(xo|x,) =N <§70_t2 ) (closed-form!)

o o

Exact Score Kawar et al. 2022: Gaussian convolution = p(y|x,) = N(y; it,, 2/)
1 To—1 _ — AXI _ T 2
Vx logp(ylx) = —A %7 (y — p,) where f, = —, %, = —5AA" + 0,1
t

linear + Gaussian: exact closed-form; general: requires approximation (DPS)
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Diffusion Posterior Sampling (DPS) Chung et al. 2023

DPS Algorithm

Input: Observation y, pre-trained score network sy(x, ¢), forward model A
Fort=T7,T—1,... 1:
1. Predict clean image via conditional expectation (Tweedie’s formula):

X0 = E[xo[x;] = (x; + 0759(x;, 1)) /vy
2. Compute likelihood gradient:

Vx logp(y[x:) =~ =V [A(%) — I
3. Posterior sampling step:

X1 = fu(X;) + AVy, log p(y[x,) + g€

Output: Posterior sample xy ~ 7 (x|y)

b3}
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Tweedie’s Formula: Score «» Denoising

For noisy observation x; = x, + o¢ with
e ~ N(0,I) Efron 2011 :

p(zo)
E[xo|x;] = x| + 0V, log p(x;) ‘
Intuition: Denoising via the Score
» Score V log p(x;) points toward
high-density regions of the prior N ‘ -
» o2 scales the correction: | L5 o o

» Large o (noisy) — trust prior more
» Small o (clean) — trust observation

» Best linear estimator for Gaussian prior
For Inverse Problems

» Score network gives x, = E[xo|x/]

» Evaluate A(x,) for data fidelity

Tweedie: the bridge between score and denoised reconstruction

SBI

b3}

IP
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Example: DPS on a Gaussian Mixture Model

A Tractable Example Where Everything is Analytical
Prior: 3-component GMM
m(x) = S0 wiN(X; iy, 07) by bt e it < ot
» Means: u = [-2.5,0.0, 1.5]
» Stds: ¢ = [0.3,0.4,0.3], Weights:
w=[0.3,0.5,0.2]

Likelihood: p(y|x) = N(y;x, Uy2), Yobs = 0.5, o A
o, =0.8 "

Analytical Posterior (also a GMM!) — precision addition + evidence weighting

jor m(x)
—- Likelihood p(y|x) (scaled)
—— Posterior n(xly)
= Yops=0.5

ity

)
oio
~2 K%y ~ 2 Mk Yobs ~ . 2 2
=5 =0 | 5+, Wio<wi N(yobs; th, 0% +07)
o; + 0oy oy oy

key insight: mode at x = —2.5 nearly eliminated (w, ~ 0.001)

b3}

IP

Title Intro Bayes SBI Diffusion References




$J lruthot@emor y.edu

Comp Math and Al @ ML for Inverse Problems

Score Functions for the GMM

Score of a Gaussian Mixture
For GMM p(x) = >, wipr(x) where o = N (x; ., 07):

2 WiV r(X) X — fu
Vxlogp(x) = ==Y nx
> Wipk(X) X i
where responsibility r,(x) = % is soft assignment to component k

Time-Evolved Marginal at Time ¢
Under VP diffusion: x, = a;xy + o,¢, the marginal is also a GMM:

pi(x;) = Z wiN (Xs; Qi afa,f + 0,2)
k
Same Formula, Time-Evolved Parameters

X, —
Vi logpi(x) = — Z r) (x,)t—"uk

252 2
. a;o; + o;

GMM score can be computed analytically. No training/approximation required!

Title
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Visual Comparison: DPS vs True Posterior Sampling

DPS Samples True Posterior Score

Standard SDE (True Score) vs True Posterior

DPS Samples vs True Posterior

BN DPS samples
= True posterior 0.8

I SDE samples
= True posterior

0.2

0.0

g -3 -2 -1

Key Observations
» True SDE (red): matches posterior perfectly (validates implementation)

» DPS (blue): spurious samples near x ~ —2 (should be ~ 0.1%!)
» DPS std = 0.82 vs true std = 0.62 (32% inflation)
DPS over-represents unlikely modes due to delayed guidance

SBI

»
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Diffusion
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Spacetime Evolution: When Does DPS Fail?

DPS Sampling Standard SDE (True Score)

0.08
4 0.07 4 0.08
0.06
2 2
0.06
0.05
2 2
x 0 0.04 2 x 0 K
k3 k3
a 0.04 o
0.03
-2 -2
0.02
0.02
a 0.01 74
0.00 0.00
-3.0 -2.5 -2.0 -1.5 . . 0.0 -3.0 . i -1.5 . . 0.0
l0g10(t) logio(t)

Timeline of Failure (read rightto left: r =1 — ¢t = 0)
» Large 1: Both start from N (0, 1)—identical
» Medium ¢: True SDE suppresses x ~ —2 mode; DPS doesn’t
» Small : Too late—DPS trajectories “stuck” near wrong mode

DPS lacks early mode discrimination — wrong final distribution

b3}
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Why DPS Fails: The Approximation Problem x

True posterior score at time 7: V, logp,(x;|y) = Vy, log p:(x;) + Vy, log p,(y|x;)
The problem: We know p(y|xo), but need p,(y|x;) = [ p(y[x0) p(Xo|x;) dxo
DPS Approximation: Replace integral with point estimate via Tweedie

. X; + 02V, log p,(x 1 .
X0 = E[xo[x;] = ' : 8pi(x) = Vylogp(yx;) ~ Evio log p(y[%o)
t

Q;

Why This Fails (recall: o, -+ 0ast — 1, i.e., early in reverse process):
» Multi-modal posterior: x, may lie between modes — spurious x ~ —2 samples

» Early guidance unstable: o, small — 1/a, explodes — must disable guidance —
miss mode discrimination (spacetime plot!)

Point estimate + delayed guidance — wrong mode weights! Better estimators
needed!

b3}
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.. Inverse Problems and Al
lll-Posed Inverse Problems
» Direct inverse learning fails: no rescue from data/architecture
» Regularization needed: encode prior knowledge to stabilize

Bayesian Framework
» Uncertainty is information: multi-modal posteriors reveal non-uniqueness
» Posterior enables better decisions than point estimates

Simulation-Based Inference
» Amortized inference: pay training cost once, get fast posteriors
» Requires many training samples (forward simulations)
» COT-Flow: 30-100x reduction for expensive PDE simulators

Diffusion Posteriors
» Not amortized: runs full diffusion process per sample
» Score additivity enables modular composition (prior + likelihood)
» Challenge: Good approximation of score of likelihood needed

Intro IP Bayes SBI Diffusion P References
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>.: Other Open Challenges

Title

Fast Diffusion Sampling
» Goal: 5-10 steps instead of 1000 (consistency models, distillation)
» Enables real-time clinical applications

Robustness and Model Misspecification
» What happens when prior/likelihood are wrong?
» Domain shift, out-of-distribution, uncertainty about uncertainty

Physics-Informed Generative Models
» Combine PDE constraints with learned priors
» Hard constraints vs soft penalties; conservation laws

b3}
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