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Reading List
Historical Context: Inverse problems require regularization due to ill-posedness.
Recent advances use diffusion priors and simulation-based inference.

Key Readings:
1. Antun et al. (2020) – On Instabilities of Deep Learning in Image Reconstruction.

PNAS
Critical analysis of neural network stability in inverse problems.

2. Chung et al. (2023) – Diffusion Posterior Sampling for Inverse Problems. ICLR
Current state-of-the-art using diffusion priors.

3. Cranmer et al. (2020) – The Frontier of Simulation-Based Inference. PNAS
Likelihood-free Bayesian inference methods.

4. Wang et al. (2023) – Efficient Neural Approaches for Conditional OT.
arXiv:2310.16975
COT-Flow for fast posterior estimation.

5. Kawar et al. (2022) – Denoising Diffusion Restoration Models. NeurIPS
DDRM for linear inverse problems.

Outline: Ill-posedness → Bayesian → Simulation-Based Inference → Diffusion
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Roadmap & Learning Objectives

Linear
Algebra Optimization PDEs

Approx.
Theory Statistics

Probability

Comp
Math

AI

Rigorous Tools
New Capabilities

Learning Objectives
1. Why direct neural networks fail

catastrophically
2. Simulation-based inference for

expensive simulators
3. Diffusion models as priors

Roadmap
1. Inverse problems background
2. NN failure modes
3. Simulation-based inference (SBI)
4. Diffusion posterior sampling

Today: AI provides new opportunities for inverse problems
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Ill-posed Inverse Problems
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Forward vs. Inverse Problems

x A y

Forward

y A−1 x? ?

Inverse

Forward Problem:
▶ Given parameters x ∈ Rn

▶ Predict observations y = A(x) + ϵ

▶ Well-posed, tractable
Inverse Problem:
▶ Given observations y ∈ Rm

▶ Infer parameters x
▶ Mathematically treacherous

Hadamard Well-Posedness Conditions
✓ Existence: Solution exists for all data
✓ Uniqueness: Solution is unique
X Stability: Small data changes → small solution changes

ill-posed inverse problems are ubiquitous and known to be challenging
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Motivating Example: Image Deblurring

Noisy Data

Least Squares Early Stopped

Key Observation
▶ Least squares solution amplifies noise (ill-posedness!)
▶ Early stopping provides implicit regularization
▶ Continuing optimization makes things worse

This Lecture
▶ Why direct neural networks fail catastrophically
▶ Generative AI for inverse problems

early stopping is implicit regularization for ill-posed problems
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The Naive Approach: Directly Learning A−1

Ground Truth Noisy Data NN Recon Early Stopped

?
Training Setup:

(xi, yi)

Gθ(y)

L = E[∥x − Gθ(y)∥2]

Network learns: Gθ ≈ A−1

Why This Fails:
▶ The inverse A−1 is unbounded (ill-posed!)
▶ ⇒ Network inherits unbounded Lipschitz constant
▶ Not a deep learning artifact—this is linear algebra
▶ Even implicit regularization cannot overcome

∥A−1∥ = ∞
▶ More data/better net → better fit to unstable map

Key Insight (Hansen et al., 2021): Deep learning becomes unstable. Training
on clean pairs teaches the network an unstable inverse map.
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Takeaway from Direct Learning Failure

Three Critical Lessons
X Direct inverse learning does not overcome ill-posedness

▶ Network amplifies noise
▶ Training on clean data ̸= robustness to noise

X No amount of data or architecture fixes instability
▶ More capacity → worse instability (closer to A−1)
▶ Better data → better fit to unstable map
▶ This is not a typical ML problem

✓ We need methods that acknowledge uncertainty
▶ Single point estimate is insufficient
▶ Multiple solutions may fit data equally well
▶ Uncertainty quantification is essential
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Bayesian Framework
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The Bayesian Formulation
Posterior Distribution

π(x|y) ∝ p(y|x)︸ ︷︷ ︸
likelihood

· π(x)︸︷︷︸
prior

Components:
▶ Likelihood p(y|x): Forward model + noise

▶ Gaussian: p(y|x) ∝ exp(− 1
2σ2 ∥A(x)− y∥2)

▶ Prior π(x): What we (think we) know
before seeing data

▶ Posterior π(x|y): Updated belief given
data

Posteriors Reveal Structure

Unimodal Bimodal Uncertain

▶ Multi-modality: Multiple valid
solutions

▶ Width: Uncertainty in inference

▶ Shape: Guides decision-making

Advantages of Full Posteriors Over Just Point Estimates
▶ Ill-posedness → non-uniqueness: multiple solutions fit data equally well
▶ Posterior width quantifies reliability; shapes guide different decisions

uncertainty is information, not failure—the full posterior matters
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Classical Posterior Sampling Methods
MCMC (Markov Chain Monte Carlo):
▶ Algorithm: Construct Markov chain

with stationary distribution π(x|y)
▶ Variants: Metropolis-Hastings,

Gibbs, HMC (Hamiltonian)
▶ Cost: 104–106 likelihood evaluations
▶ Assumes: Can evaluate p(y|x)

pointwise
✓ Asymptotically exact
– Slow mixing in high dimensions
– Each step needs likelihood

Variational Inference (VI):
▶ Algorithm: Optimize qφ(x) ≈ π(x|y)

in parametric family
▶ Objective: Minimize reverse KL

KL(q∥π) via ELBO
▶ Cost: 103–105 gradient steps
▶ Assumes: Tractable family qφ

– Optimization
– Approximation bias (may miss

modes)
– Still needs likelihood access

What if we can’t evaluate the likelihood?
Forward model A is a black-box simulator (climate, turbulence, PDEs)

Each simulation: minutes to hours → MCMC/VI infeasible
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Connection to Lecture 6: Generative Modeling
Recall Lecture 6
▶ Learned distributions of natural signals using diffusion models
▶ Score-based methods via Fokker-Planck PDE
▶ Generated samples from p(x) (unconditional)

Lecture 9: Conditional Generation
▶ Use learned priors to solve inverse problems
▶ Sample from posterior π(x|y) (conditional on observations)
▶ Quantify uncertainty in reconstructions

Key Equation: Posterior Score Decomposition

∇x log π(x|y)︸ ︷︷ ︸
posterior score

= ∇x log π(x)︸ ︷︷ ︸
prior (from L6)

+∇x log p(y|x)︸ ︷︷ ︸
likelihood (from A)

Modular Composition
▶ Pre-train prior π(x) once on clean data
▶ Apply to many inverse problems with different forward models A
▶ No retraining needed for each new problem!

generative AI from L6 → inverse problem solver in L9Title Intro IP Bayes SBI Diffusion Σ References 12
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Simulation-Based Inference

Title Intro IP Bayes SBI Diffusion Σ References 13



lruthot@emory.edu Comp Math and AI @ ML for Inverse Problems

Neural Posterior Estimation (NPE)
Core Idea: Learn π(x|y) Directly

1. Simulate

Sample xi ∼ π(x)
Run yi = A(xi) + ϵ

Collect pairs
{(xi, yi)}N

i=1

2. Train

Neural density
estimator

qφ(x|y)
(flow, score)

3. Infer

Given new yobs

Sample from
qφ(x|yobs)

Instantly!

Amortized Inference
▶ Upfront cost: Run N simulations, train neural network
▶ Per-query cost: Sample from qφ(x|y) in milliseconds
▶ Benefit: Pay once, infer many times (different observations)

Sequential NPE (SNPE) Papamakarios et al. 2019; Greenberg et al. 2019
▶ Iteratively refine: simulate from current posterior estimate, retrain
▶ Converges in 3–5 rounds; 100–1000× fewer simulations than MCMC
▶ Focuses computational budget on high-posterior regions

SBI: likelihood-free posterior sampling from simulator runsTitle Intro IP Bayes SBI Diffusion Σ References 14
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COT-Flow: Optimal Transport for Posterior Estimation
Goal: Learn posterior π(x|y) from samples
(x, y) ∼ π(x, y)

Recall from Lecture 6: OT-Flow learns
generator gθ : Z → X via
▶ Neural ODE: du

dt = vθ(t, u)
▶ OT regularization: minimize kinetic energy
▶ Conservative velocity: vθ = −∇Φθ

Extension to Conditional Distributions:
Train conditional generator gθ(z, y) such that

π(x|y) ≈ ρZ(g−1
θ (x, y)) · | det∇xg−1

θ (x, y)|

Idea: condition velocity field on observation y

Transport from prior ρZ to posterior π(x|y)

COT-Flow: likelihood-free VI via OT-regularized flows
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COT-Flow: Mean Field Game Formulation
Training Objective (OT-penalized maximum likelihood) Wang et al. 2023

min
θ

E(x,y)∼π

− log qθ(x|y)︸ ︷︷ ︸
posterior fit

+α

∫ 1

0

1
2
∥vθ(t, p, y)∥2dt︸ ︷︷ ︸
kinetic energy

+β

∥∥∥∥∂tΦ +
1

2α
∥∇xΦ∥2

∥∥∥∥2

︸ ︷︷ ︸
HJB penalty


Hamilton-Jacobi-Bellman Equations (from optimal control)

∂tΦ(t, x, y)− 1
2α

∥∇xΦ(t, x, y)∥2 = 0

Implementation Strategy (extends OT-Flow from Lecture 6)
1. Learn scalar potential Φθ(t, x, y) with neural network
2. Use feedback form: vθ(t, u, y) = − 1

α
∇xΦθ(t, u, y)

3. Explicit Laplacian: ∇ · vθ = − 1
α
∆Φθ (efficient likelihood)

4. HJB penalty (β > 0) enforces optimality of transport paths
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COT-Flow: Stochastic Lotka-Volterra Example
Problem Setup:
▶ Predator-prey dynamics
▶ x ∈ R4: rate parameters
▶ y ∈ R9: summary statistics

Sample Efficiency:
▶ SMC: ≈6–18M simulations
▶ COT-Flow: 50k–500k sims
▶ 30–100× speedup

When to Use:
▶ Expensive PDE simulators
▶ Moderate dimensions

(d ≤ 100)
▶ Multi-modal posteriors

COT-Flow (500k) SMC (≈18M)

Posterior corner plots: diagonal = marginals, off-diagonal = 2D projections

COT-Flow matches SMC quality with 30–100× fewer simulations
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Summary: Bayesian Methods for Inverse Problems
Three Approaches to Posterior Sampling

1. Classical MCMC/VI
▶ Requires likelihood access: can evaluate p(y|x)
▶ Exact (asymptotically) but expensive: 105–106 evaluations
▶ Use when: likelihood cheap, moderate dimensions

2. Simulation-Based Inference (SBI/NPE)
▶ Likelihood-free: only need simulator y = A(x) + ϵ
▶ Amortized: train once, infer many times instantly
▶ Use when: expensive black-box simulators

3. COT-Flow (forward-KL VI, likelihood-free)
▶ Best sample efficiency: 30–100× fewer simulations
▶ Better mode coverage via optimal transport
▶ Use when: very expensive PDEs, multi-modal posteriors

Key Limitation: All SBI methods learn a specific posterior π(x|y)
If forward operator A or prior π(x) changes, must retrain from scratch

next: diffusion models offer a modular alternative
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Diffusion Models for Inverse Problems

Title Intro IP Bayes SBI Diffusion Σ References 19



lruthot@emory.edu Comp Math and AI @ ML for Inverse Problems

Score-Based Approach to Inverse Problems

Bayes’ Theorem Becomes Additive for Scores

∇x log π(x|y)︸ ︷︷ ︸
posterior score

= ∇x log π(x)︸ ︷︷ ︸
prior score

+∇x log p(y|x)︸ ︷︷ ︸
likelihood score

Prior Score (from L6):
▶ Learned by diffusion model: sθ(x, t)
▶ Pre-trained once, reusable
▶ Encodes complex priors (natural

images)

Likelihood Score (needed):
▶ Derived from forward model A
▶ Problem-specific
▶ Tweedie’s formula

Key Advantage over SBI/COT-Flow: No retraining when A changes—modular
composition at inference
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Linear Gaussian Case: Exact Likelihood Score
The Challenge We need ∇xt log p(y|xt), not at t = 0

At time t: xt = αtx0 + σtϵ is noisy, but y = Ax0 + η depends on clean x0

Marginalize Over x0

p(y|xt) =

∫
p(y|x0) p(x0|xt) dx0

Key insight: p(x0|xt) is from the Gaussian diffusion kernel (not the prior!):

p(x0|xt) = N
(

xt

αt
,
σ2

t

α2
t
I
)

(closed-form!)

Exact Score Kawar et al. 2022: Gaussian convolution ⇒ p(y|xt) = N (y; µ̄t, Σ̄t)

∇xt log p(y|xt) =
1
αt

A⊤Σ̄−1
t (y − µ̄t) where µ̄t =

Axt

αt
, Σ̄t =

σ2
t

α2
t
AA⊤ + σ2

ηI

linear + Gaussian: exact closed-form; general: requires approximation (DPS)
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Diffusion Posterior Sampling (DPS) Chung et al. 2023

DPS Algorithm

Input: Observation y, pre-trained score network sθ(x, t), forward model A

For t = T, T − 1, . . . , 1:
1. Predict clean image via conditional expectation (Tweedie’s formula):

x̂0 = E[x0|xt] = (xt + σ2
t sθ(xt, t))/αt

2. Compute likelihood gradient:

∇xt log p(y|xt) ≈ −∇xt∥A(x̂0)− y∥2

3. Posterior sampling step:

xt−1 = µt(xt) + λ∇xt log p(y|xt) + gtϵ

Output: Posterior sample x0 ∼ π(x|y)

Key Features
▶ Works with pre-trained models (no retraining!)
▶ Handles both linear and nonlinear A (via autodiff)
▶ Guidance strength λ controls data-fidelity vs realism trade-off
▶ Generates diverse posterior samples (run multiple times)

Linear A: DDRM (Kawar et al., 2022)
▶ Uses SVD of A for exact likelihood score (no approximation)
▶ Faster/more accurate for denoising, inpainting, super-resolution

current state-of-the-art for inverse problems with diffusion models
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Tweedie’s Formula: Score ↔ Denoising
For noisy observation x1 = x0 + σϵ with
ϵ ∼ N (0, I) Efron 2011 :

E[x0|x1] = x1 + σ2∇x1 log p(x1)

Intuition: Denoising via the Score
▶ Score ∇ log p(x1) points toward

high-density regions of the prior
▶ σ2 scales the correction:

▶ Large σ (noisy) → trust prior more
▶ Small σ (clean) → trust observation

▶ Best linear estimator for Gaussian prior

x

p(x0)

1.5 x1x̂0

For Inverse Problems
▶ Score network gives x̂0 = E[x0|xt]
▶ Evaluate A(x̂0) for data fidelity

Tweedie: the bridge between score and denoised reconstruction
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Example: DPS on a Gaussian Mixture Model
A Tractable Example Where Everything is Analytical

Prior: 3-component GMM
π(x) =

∑3
k=1 wkN (x;µk, σ

2
k )

▶ Means: µ = [−2.5, 0.0, 1.5]
▶ Stds: σ = [0.3, 0.4, 0.3], Weights:

w = [0.3, 0.5, 0.2]

Likelihood: p(y|x) = N (y; x, σ2
y ), yobs = 0.5,

σy = 0.8

Analytical Posterior (also a GMM!) — precision addition + evidence weighting

σ̃2
k =

σ2
kσ

2
y

σ2
k + σ2

y
, µ̃k = σ̃2

k

(
µk

σ2
k
+

yobs

σ2
y

)
, w̃k ∝ wk · N (yobs;µk, σ

2
k + σ2

y )

key insight: mode at x = −2.5 nearly eliminated (w̃1 ≈ 0.001)
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Score Functions for the GMM
Score of a Gaussian Mixture
For GMM p(x) =

∑
k wkφk(x) where φk = N (x;µk, σ

2
k ):

∇x log p(x) =
∑

k wk∇xφk(x)∑
k wkφk(x)

= −
∑

k

rk(x)
x − µk

σ2
k

where responsibility rk(x) = wkφk(x)∑
j wjφj(x)

is soft assignment to component k

Time-Evolved Marginal at Time t
Under VP diffusion: xt = αtx0 + σtϵ, the marginal is also a GMM:

pt(xt) =
∑

k

wkN (xt;αtµk, α
2
t σ

2
k + σ2

t )

Same Formula, Time-Evolved Parameters

∇xt log pt(xt) = −
∑

k

r(t)k (xt)
xt − αtµk

α2
t σ

2
k + σ2

t

GMM score can be computed analytically. No training/approximation required!
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Visual Comparison: DPS vs True Posterior Sampling

DPS Samples True Posterior Score

Key Observations
▶ True SDE (red): matches posterior perfectly (validates implementation)
▶ DPS (blue): spurious samples near x ≈ −2 (should be ≈ 0.1%!)
▶ DPS std = 0.82 vs true std = 0.62 (32% inflation)

DPS over-represents unlikely modes due to delayed guidance
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Spacetime Evolution: When Does DPS Fail?

Timeline of Failure (read right to left: t = 1 → t = 0)
▶ Large t: Both start from N (0, 1)—identical
▶ Medium t: True SDE suppresses x ≈ −2 mode; DPS doesn’t
▶ Small t: Too late—DPS trajectories “stuck” near wrong mode

DPS lacks early mode discrimination → wrong final distribution
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Why DPS Fails: The Approximation Problem ⋆

True posterior score at time t: ∇xt log pt(xt|y) = ∇xt log pt(xt) +∇xt log pt(y|xt)

The problem: We know p(y|x0), but need pt(y|xt) =
∫

p(y|x0) p(x0|xt) dx0

DPS Approximation: Replace integral with point estimate via Tweedie

x̂0 = E[x0|xt] =
xt + σ2

t ∇xt log pt(xt)

αt
⇒ ∇xt log pt(y|xt) ≈

1
αt
∇x̂0 log p(y|x̂0)

Why This Fails (recall: αt → 0 as t → 1, i.e., early in reverse process):
▶ Multi-modal posterior: x̂0 may lie between modes → spurious x ≈ −2 samples
▶ Early guidance unstable: αt small → 1/αt explodes → must disable guidance →

miss mode discrimination (spacetime plot!)

Point estimate + delayed guidance → wrong mode weights! Better estimators
needed!
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Summary
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Σ: Inverse Problems and AI
Ill-Posed Inverse Problems
▶ Direct inverse learning fails: no rescue from data/architecture
▶ Regularization needed: encode prior knowledge to stabilize

Bayesian Framework
▶ Uncertainty is information: multi-modal posteriors reveal non-uniqueness
▶ Posterior enables better decisions than point estimates

Simulation-Based Inference
▶ Amortized inference: pay training cost once, get fast posteriors
▶ Requires many training samples (forward simulations)
▶ COT-Flow: 30-100× reduction for expensive PDE simulators

Diffusion Posteriors
▶ Not amortized: runs full diffusion process per sample
▶ Score additivity enables modular composition (prior + likelihood)
▶ Challenge: Good approximation of score of likelihood needed
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Σ: Other Open Challenges

Fast Diffusion Sampling
▶ Goal: 5-10 steps instead of 1000 (consistency models, distillation)
▶ Enables real-time clinical applications

Robustness and Model Misspecification
▶ What happens when prior/likelihood are wrong?
▶ Domain shift, out-of-distribution, uncertainty about uncertainty

Physics-Informed Generative Models
▶ Combine PDE constraints with learned priors
▶ Hard constraints vs soft penalties; conservation laws
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