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Reading List
Historical Context: AI-assisted mathematical discovery traces from automated
theorem proving in the 1950s to modern neural-guided search, now discovering new
mathematics.

Key Readings:
1. Fawzi et al. (2022) – Discovering faster matrix multiplication algorithms. Nature

First AI to discover algorithms beating 50-year human records.

2. Novikov, Fawzi, et al. (2025) – AlphaEvolve: A coding agent for scientific
discovery. DeepMind
LLM-based evolution framework; complementary approach to AlphaTensor.

3. Moura and Ullrich (2021) – The Lean 4 Theorem Prover. CADE
Modern proof assistant with Mathlib (210K+ theorems).

4. Song et al. (2024) – Lean Copilot: LLMs for Theorem Proving. NeurIPS
AI-assisted formal verification; 74% proof step automation.

Lecture Outline: Why Math? → Matrix Multiplication→ AlphaTensor→ AlphaEvolve
→ Proof Assistants→ Synthesis
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Introduction
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AI Breaks 50-Year-Old Records
The Matrix Multiplication Story

Year Event Multiplications
Standard Naive algorithm for 4×4 64
1969 Strassen discovers 7-multiply for 2×2 → O(n2.81)
1969-2022 No improvement for 4×4 49 (Strassen2)
2022 AlphaTensor (RL on tensors) 47 (Z2), 48 (standard)
2024 AlphaEvolve (LLM evolution) 48 (complex)

Two Complementary Approaches
▶ AlphaTensor: Exploits tensor structure via RL game
▶ AlphaEvolve: Flexible code evolution via LLMs

Neither is “better”—different tools for different contexts

AI broke 50-year records using complementary strategies
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What Makes AI Promising for Mathematics?

“Intelligence means having a goal.” — Richard Sutton

Mathematics Provides Clear, Verifiable Goals
▶ Matrix multiplication: Count scalar multiplications, verify correctness

numerically/symbolically
▶ Theorem proving: Proof type-checks⇒ guaranteed correct
▶ Algorithm discovery: Objective function is unambiguous

Contrast with Open-Ended Natural Language Tasks
▶ What is funny? Humor is culturally dependent
▶ Creative writing: What is “good”?
▶ Art generation: Success is subjective

clear objectives enable AI breakthroughs in mathematics
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Two Modes of AI in Mathematics

Discovery (Inductive)
▶ Search vast spaces
▶ Propose novel

algorithms/constructions
▶ Methods: RL, code evolution,

heuristic search
▶ Systems: AlphaTensor, AlphaEvolve

Fast but uncertain

Verification (Deductive)
▶ Prove correctness
▶ Formalize mathematics
▶ Methods: Proof assistants, formal

methods
▶ Systems: Lean 4, LeanCopilot

Slow but certain

Problem-Specific Choice: Some problems need discovery, some need proofs

Different examples for each mode are natural—they don’t always meet

discovery and verification are complementary tools
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Matrix Multiplication
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Why Matrix Multiplication Matters
Matrix Multiplication is Everywhere
▶ Neural network forward/backward passes
▶ Graphics and game engines
▶ Scientific simulations
▶ Cryptography

The Complexity Question
▶ Naive algorithm: n3 multiplications for n× n matrices
▶ Can we do better? How many multiplies are actually necessary?

Why 4×4 Specifically
▶ Building block for larger matrices (recursive algorithms)
▶ Hardware-relevant size (SIMD, tensor cores)
▶ Small enough to search, large enough to matter

small improvements in matrix multiplication compound at scale
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Algorithm Discovery as Discrete Optimization
Problem Formulation
Let A be the space of all algorithms for a task. Find:

a∗ = argmin
a∈A

L(a)

where L : A → R measures cost (e.g., operation count, runtime)

Key Design Choice: How do we represent candidate algorithms?
▶ As tensors: AlphaTensor (exploits mathematical structure)
▶ As code: AlphaEvolve (flexible, domain-agnostic)

Why Is This Hard?
▶ A is discrete, combinatorial, and huge
▶ No gradient information available
▶ Random search is hopeless

Classical Local Search: ak+1 ∈ N (ak) with random neighbors
Problem: Random perturbations rarely produce valid/improved algorithms
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The Tensor Decomposition View
Mathematical Formulation
Matrix multiplication (A,B) 7→ C = AB defines a trilinear form:

Cij =
∑

k

AikBkj

This encodes into a 3-way tensor T ∈ Rn2×n2×n2 with decomposition:

T =
R∑

r=1

ur ⊗ vr ⊗ wr

Key Correspondence Kolda and Bader 2009
▶ Each rank-1 term ur ⊗ vr ⊗ wr ↔ one scalar multiplication
▶ Tensor rank R: Minimum number of rank-1 terms needed
▶ Finding minimal R = finding most efficient algorithm

The Search Problem
Given multiplication tensor T , find vectors {ur, vr,wr}R

r=1 minimizing R

tensor rank = number of scalar multiplications
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2×2 Example: Naive Algorithm (Rank 8)
The Naive Decomposition
For C = AB with 2×2 matrices, naive algorithm uses 8 multiplications:

Cij =
2∑

k=1

AikBkj

Explicit Rank-1 Terms (vectorizing A,B,C as length-4 vectors)

r ur (selects from A) vr (selects from B) wr (contributes to C) Computes
1 (1, 0, 0, 0) (1, 0, 0, 0) (1, 0, 0, 0) a11b11 → c11
2 (0, 1, 0, 0) (0, 0, 1, 0) (1, 0, 0, 0) a12b21 → c11
3 (1, 0, 0, 0) (0, 1, 0, 0) (0, 1, 0, 0) a11b12 → c12
4 (0, 1, 0, 0) (0, 0, 0, 1) (0, 1, 0, 0) a12b22 → c12
5 (0, 0, 1, 0) (1, 0, 0, 0) (0, 0, 1, 0) a21b11 → c21
6 (0, 0, 0, 1) (0, 0, 1, 0) (0, 0, 1, 0) a22b21 → c21
7 (0, 0, 1, 0) (0, 1, 0, 0) (0, 0, 0, 1) a21b12 → c22
8 (0, 0, 0, 1) (0, 0, 0, 1) (0, 0, 0, 1) a22b22 → c22

Each row = one scalar multiplication. Total: R = 8
Title Intro MatMul AlphaTensor AlphaEvolve Proofs Σ References 11



lruthot@emory.edu Comp Math and AI @ Discovery

2×2 Example: Strassen’s Algorithm (Rank 7)
Strassen’s Insight (1969): Trade multiplications for additions
Define 7 intermediate products M1, . . . ,M7:

M1 = (a11 + a22)(b11 + b22)

M2 = (a21 + a22)b11

M3 = a11(b12 − b22)

M4 = a22(b21 − b11)

M5 = (a11 + a12)b22

M6 = (a21 − a11)(b11 + b12)

M7 = (a12 − a22)(b21 + b22)

Reconstruction

c11 = M1 + M4 −M5 + M7 c12 = M3 + M5

c21 = M2 + M4 c22 = M1 −M2 + M3 + M6

Result: 7 multiplications, 18 additions (vs. 8 mult, 4 add for naive)

Strassen proved rank ≥ 7, so this is optimal for 2×2
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Strassen as Tensor Decomposition
The 7 Rank-1 Terms (non-zero entries only, using ±1 coefficients)

r ur (selects from A) vr (selects from B) wr (contributes to C) Computes
M1 (1, 0, 0, 1) (1, 0, 0, 1) (1, 0, 0, 1) (a11 + a22)(b11 + b22)
M2 (0, 0, 1, 1) (1, 0, 0, 0) (0, 0, 1,−1) (a21 + a22)b11
M3 (1, 0, 0, 0) (0, 1, 0,−1) (0, 1, 0, 1) a11(b12 − b22)
M4 (0, 0, 0, 1) (−1, 0, 1, 0) (1, 0, 1, 0) a22(b21 − b11)
M5 (1, 1, 0, 0) (0, 0, 0, 1) (−1, 1, 0, 0) (a11 + a12)b22
M6 (−1, 0, 1, 0) (1, 1, 0, 0) (0, 0, 0, 1) (a21 − a11)(b11 + b12)
M7 (0, 1, 0,−1) (0, 0, 1, 1) (1, 0, 0, 0) (a12 − a22)(b21 + b22)

Validity Constraint: For any decomposition T =
∑

r ur ⊗ vr ⊗ wr

Valid ⇐⇒ ∀A,B :
∑

r

(u⊤
r vec(A))(v⊤

r vec(B))wr = vec(AB)

Tensor T encodes the multiplication table: decomposition must reconstruct it exactly

finding better algorithms = finding lower-rank decompositions
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Historical Breakthroughs and the 4×4 Gap
The Strassen Revolution (1969) Strassen 1969
▶ 2×2: Rank 7 (optimal, proven)
▶ Recursive application: O(nlog2 7) ≈ O(n2.807)

▶ Coppersmith-Winograd (1990): O(n2.376) theoretical bound

The 4×4 Stagnation

Method Multiplications Notes
Naive 64 43

Strassen2 (recursive) 49 72

Best known (pre-2022) 49 No improvement!
Theoretical minimum ≥ 19 Lower bound

50+ years with no practical improvement for 4×4!

next: how to discover multiplication algorithms with AI
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AlphaTensor: RL on Tensor Structure
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AlphaTensor: Tensor Decomposition as a Game
AlphaTensor’s Key Innovation Fawzi et al. 2022
Reframe tensor decomposition as a single-player game:
Why Not Standard Tensor Decomposition?
▶ We want factors with small integer entries {−2,−1, 0, 1, 2} (exact arithmetic)
▶ Standard methods (ALS, gradient descent) find real-valued decompositions
▶ Integer constraint⇒ discrete combinatorial search⇒ RL

TensorGame
▶ State: Residual tensor St (initialized: S0 = T , the multiplication tensor)
▶ Action: St+1 = St − u⊗ v⊗ w where u, v,w have small integer entries
▶ Goal: SR = 0 (complete decomposition)
▶ Reward: −R (minimize number of rank-1 terms)

RL Architecture (AlphaZero-style)

State (tensor)→ Transformer→ Value + Policy (next action)

Training
▶ Self-play from scratch (no human algorithm examples)
▶ Exploits symmetries of multiplication tensor
▶ Synthetic games for curriculum learning
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AlphaTensor Results
Breakthrough Achievement (2022) Fawzi et al. 2022

Matrix Size Previous Best AlphaTensor Arithmetic
4×4 49 48 Standard (R)
4×4 49 47 Modular (Z2)
5×5 98 96 Modular (Z2)

What is Modular Arithmetic (Z2)?
▶ Arithmetic modulo 2: only values 0 and 1, where 1 + 1 = 0
▶ Used in cryptography, coding theory, computer science
▶ Simpler structure⇒ sometimes allows lower rank
▶ AlphaTensor’s 47-multiplication algorithm works only in Z2

Scale of Discovery
Discovered 14,000+ distinct algorithms for 4×4 alone!

exploiting tensor structure via RL breaks long-standing records
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AlphaEvolve: LLM Code Evolution
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LLMs as Informed Proposal Distributions
Analogy to MCMC
In Markov Chain Monte Carlo, better proposal q(x′|x)⇒ faster convergence

For Algorithm Search
Define a proposal distribution q(a′|a) over algorithm modifications:
▶ Uniform random: q(a′|a) ∝ 1a′∈N (a) (inefficient)
▶ Informed: q(a′|a) concentrates on “sensible” modifications

The LLM as Proposal Distribution
Large language models define an informed proposal:

qLLM(a′|a) = P(modified code a′ | original code a)

▶ Trained on billions of lines of code⇒ learns valid transformations
▶ Proposes structurally valid algorithms (not random bit flips)
▶ Sample complexity: ∼150 evaluations vs. millions

Hope: LLMs provide intelligent navigation of algorithm space
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The Iterative Search Algorithm

Algorithm (LLM-Guided Evolutionary Search) Novikov, Fawzi, et al. 2025

Input: Initial algorithm a0, objective L, archive cells {Cj}
Initialize: Archive B ← {a0}
For k = 1, . . . ,K:

1. Select: Sample a from archive B (quality-weighted)
2. Propose: Generate a′ ∼ qLLM(·|a) via language model
3. Evaluate: Compute L(a′) and verify correctness
4. Update: If L(a′) < L(B[j]), set B[j]← a′

Return: Archive B of best algorithms

Key Properties
▶ Typically K ∼ 150 iterations (not millions!)
▶ Discovers interpretable algorithms (executable code)
▶ Maintains diversity across trade-off space
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AlphaEvolve Results
Matrix Multiplication Achievement Novikov, Fawzi, et al. 2025
▶ 4×4 complex-valued matrices: 48 scalar multiplications
▶ First improvement over Strassen (49) for complex matrices

Broader Discoveries
Problem Class Match Known Exceed Known
Combinatorial optimization 75% 20%
Discrete mathematics 80% 15%
Algorithm design 70% 25%

AlphaTensor vs. AlphaEvolve: Complementary Approaches

AlphaTensor AlphaEvolve
Representation Tensor decomposition Executable code
Search method RL (AlphaZero) LLM evolution
Structure use Exploits tensor structure Domain-agnostic
Best 4×4 47 (Z2), 48 (R) 48 (C)

Neither is “better”—different strengths for different contexts
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The Discovery-Verification Gap
What Discovery Systems Provide
✓ Candidate algorithms
✓ Numerical verification on test cases
✓ Efficient implementations
✓ Clear objective: multiplication count

What’s Still Missing
× Formal proof of correctness for all inputs
× Rigorous complexity analysis
× Numerical stability guarantees

The Goal Advantage Again
Matrix multiplication has a clear verification criterion: numerical correctness
But for mathematical theorems, we want absolute certainty...

next: proof assistants provide the “ultimate truth”
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Proof Assistants
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What Are Proof Assistants?
Definition: Interactive theorem provers that convert informal mathematics into
machine-checkable formal proofs

Key Property: Absolute certainty — if the proof type-checks, it’s correct

The Goal is Crystal Clear

Sutton’s Principle Applied

Proof type-checks = correct. No ambiguity. Ultimate truth.

The Lean 4 Ecosystem Moura and Ullrich 2021
▶ Modern proof assistant (Microsoft Research→ open source)
▶ Mathlib: 210,000+ theorems, 100,000+ definitions
▶ Active community including Terence Tao

The Formalization Process

Informal theorem→ Formal statement→ Proof tactics→ Verified theorem
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The Formalization Challenge

What Makes Formalization Hard
1. Expertise barrier: Learning Lean syntax and tactics
2. Library knowledge: Which of 210,000 theorems are relevant?
3. Granularity gap: Informal “obvious”→ formal 50-step proof
4. Time investment: 10-100× longer than informal proof

The Verification Bottleneck
▶ Discovery systems produce candidates faster than we can verify
▶ Human formalization effort is the limiting factor
▶ AI assistance is essential for scaling

verification is the bottleneck, not discovery
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Example: Gershgorin Circle Theorem

The Formalization Gap: Same theorem, two representations

LaTeX (Informal)

“Every eigenvalue λ of A lies in some
Gershgorin disc:”

Di = {z : |z− aii| ≤ ri}

where ri =
∑

j̸=i |aij|

Human-readable, ambiguous types

Lean 4 (Formal)

def radius (A : Matrix n n C)
(i : n) : R :=

sum j, |A i j| -- j != i

theorem gershgorin
(h : e in spectrum C A) :
exists i, e in disc A i := by

sorry -- proof needed!

Machine-checkable, explicit types

The Gap: Informal “obvious”→ formal 50+ tactics

AI assistance bridges the informal-formal gap
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LeanCopilot: AI-Assisted Proving
LeanCopilot (2024) Song et al. 2024

Three Core Capabilities
1. Tactic Suggestion
▶ Input: Current proof state + goal
▶ Output: Next tactic to apply (like GitHub Copilot for proofs)

2. Proof Search
▶ Automated multi-step proof completion
▶ Combines neural guidance with symbolic search

3. Premise Selection
▶ Which theorems from Mathlib are relevant?
▶ LLM learns mathematical relevance patterns

Empirical Results
▶ 74.2% of proof steps automated (vs. 40.1% with aesop alone)
▶ Average 2.08 manual steps needed (vs. 3.86 without AI)
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Human-AI Collaboration Workflow

The Collaborative Pattern

Human: Strategy→ AI: Fill steps→ Human: Verify→ Lean: Check

Where AI Helps Most
▶ Boilerplate tactics
▶ Library search (premise selection)
▶ Completing routine sub-goals
▶ Interactive feedback loop

Where Humans Remain Essential
▶ Overall proof strategy
▶ Creative problem decomposition
▶ Handling edge cases
▶ Mathematical insight

Notable Achievements
▶ AlphaProof (2024): Silver medal at International Mathematical Olympiad
▶ Terence Tao: Formalized Polynomial Freiman-Ruzsa (PFR) conjecture in Lean
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Summary
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Two Modes of AI in Mathematics: Summary
Discovery and Verification are Complementary Tools

Discovery Verification
Goal Find new algorithms/objects Prove correctness
Methods RL, LLM evolution, search Proof assistants, tactics
Examples AlphaTensor, AlphaEvolve Lean 4, LeanCopilot
Strength Fast exploration Absolute certainty
Weakness No formal guarantees Slow, labor-intensive

Problem-Specific Choice
▶ Matrix multiplication→ Discovery (clear numerical objective)
▶ Formalizing theorems→ Verification (need certainty)
▶ Some problems need both, some need only one

The Common Thread: Both succeed because math provides clear goals

choose the right tool for each mathematical problem
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Σ: Five Key Takeaways

1. Clear Goals Enable AI Success
▶ Mathematics provides unambiguous objectives (Sutton’s principle)

2. Complementary Discovery Methods
▶ AlphaTensor (tensor structure + RL) and AlphaEvolve (code + LLM) both work
▶ Neither is universally better—different tools for different contexts

3. Verification Provides Certainty
▶ Proof assistants + AI: absolute correctness guarantees

4. Discovery and Verification are Problem-Specific
▶ Some problems need discovery, some need proofs, some need both

5. AI Augments Mathematicians
▶ Human insight + AI automation = powerful combination
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Research Opportunities

For Computational Mathematicians
▶ Learn basics of Lean (accessible formal methods)
▶ Experiment with evolution frameworks for your domain
▶ Collaborate with AI on formalization projects

For AI Researchers
▶ Explore mathematical domains beyond images/text
▶ Integrate symbolic reasoning with neural methods
▶ Contribute to formal-informal translation

Open Research Directions
1. Automated discovery→ verification pipelines
2. Proof-guided evolution systems
3. Verified neural solvers for PDEs
4. Mathematical intuition extraction from AI discoveries
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Course Structure: 10 Lectures, 3 Modules

Module 1: Crash Course

L1: ML Overview
▶ Learning tasks

▶ Double descent

L2: Learning Problems
▶ MLPs, GNNs, Transformers

▶ ResNets, Neural ODEs

▶ Loss functions

L3: Optimization
▶ Empirical vs. expected risk

Module 2: CM→ AI

L4: Stochastic Optimization
▶ Convergence

▶ Implicit regularization

L5: Loss Landscapes
▶ Adaptive methods

▶ Modern optimization

L6: Generative Modeling
▶ PDEs, optimal transport

▶ Diffusion, flow matching

Module 3: CM← AI

L7: Scientific ML
▶ PINNs, neural operators

▶ learned solvers

L8: High-Dim PDEs
▶ Curse of dimensionality

▶ Deep BSDE, FBSDE, HJB

L9: Inverse Problems
▶ Simulation based inference

▶ Diffusion priors

L10: Math Discovery
▶ Evolutionary coding

▶ Proof assistants
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Course Philosophy and Expectations
What this course IS:
▶ Illustrative: Representative examples

from different topics
▶ Bidirectional: CompMath↔ AI synergy
▶ Hands-on: Numerical experiments and

computational demos
▶ Research-oriented: Active frontiers,

open problems

What this course is NOT:
▶ Comprehensive: 10 lectures cannot

cover everything
▶ Pure theory: Balance rigor with intuition
▶ Software engineering: Concepts over

production code
▶ Latest & greatest: Field evolves faster

than curricula

Our approach:
▶ Pick characteristic issues from each research direction
▶ Guide you into the field, not exhaustive coverage
▶ Complement with workshop research talks
▶ Equip you to read papers and start your own projects

goal: Mathematical foundations + computational tools for CM+AI research
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Closing Reflection

Where We Started (Lecture 1)
▶ Machine learning as function approximation
▶ Neural networks as computational tools
▶ Optimization algorithms for training

Where We Ended (Lecture 10)
▶ AI discovering mathematical algorithms
▶ AI assisting formal theorem proving
▶ Computational mathematics and AI fully intertwined

The Meta-Lesson

The bidirectional relationship between computational mathematics and AI is not just
pedagogical—it’s the frontier of both fields. Progress in one advances the other.
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The Complete Course Journey
Three Modules of Computational Mathematics and AI

Linear
Algebra Optimization PDEs

Approx.
Theory Statistics

Probability

Comp
Math

AI

Rigorous Tools
New Capabilities

Module Lectures Theme
ML Crash Course 1-3 Architectures, optimization, generalization
ApplMath for ML 4-6 Theory, regularization, PDEs
ML for ApplMath 7-10 Operators, inverse problems, discovery

Thanks to the organizers, audience, and NSF and UH for this workshop!
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