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Calderón Inverse Problem

Consider the boundary value problem

div(γ∇u) =0,

u |∂Ω =f .

The measurements that one can perform on the boundary are the voltage
u |∂Ω and the current γ(∂u/∂ν) |∂Ω , where ν denotes the unit outer normal
to the boundary.
If γ ∈ L∞(Ω), for every f ∈ H1/2(∂Ω) we can define the
Dirichlet-to-Neumann map

Λγf = γ
∂u

∂v

∣∣∣∣
∂Ω

,

which has values in H−1/2(∂Ω).
Calderón’s inverse problem: Does Λγ determine γ?
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Review: CGO Solutions

Theorem (Sylvester-Uhlmann, 1986, 1987 [4])

Let Ω ⊂ Rn be a bounded open set, and let q ∈ L∞(Ω). There is a
constant C0 depending only on Ω and n, such that for any ζ ∈ Cn

satisfying ζ · ζ = 0 and |ζ| ≥ max
(
C0∥q∥L∞(Ω), 1

)
, and for any function

a ∈ H2(Ω) satisfying
ζ · ∇a = 0 in Ω

the equation (−∆+ q)u = 0 in Ω has a solution u ∈ H2(Ω) of the form

u(x) = e iζ·x(a+ r)

where r ∈ H2(Ω) satisfies

∥r∥Hk (Ω) ≤ C0|ζ|k−1∥(−∆+ q)a∥L2(Ω), k = 0, 1, 2
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Calderón problem with quasilinear conductivity
Consider the boundary value problem{

∇ · (γ(x , u)∇u) = 0 in Ω,

u = f on ∂Ω.

We define the associated Dirichlet-to-Neumann map by

Λγ(f ) = (γ(x , u)∂νu)|∂Ω
where ν is the unit outer normal to ∂Ω.

Theorem (Sun 1996 [2])

Let n ≥ 2. Assume γi ,∈ C 1,1(Ω̄× [−T ,T ]) ∀T > 0, i = 1, 2, and
Λγ1 = Λγ2 . Then γ1(x , t) = γ2(x , t) on Ω̄× R.

The linearization formula below is the key to the proof:

lim
s→0

∥∥∥∥1s Λγ(t + sf )− Λγt (f )

∥∥∥∥
W

1− 1
p ,p

(∂Ω)

= 0.

where γt(x) = γ(x , t).
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Calderón problem with quasilinear conductivity

In addition, we consider the quasilinear conductivity depending also on
∇u: {

∇ · (γ(x , u,∇u)∇u) = 0 in Ω,

u = f on ∂Ω.

The associated Dirichlet-to-Neumann map is given by

Λγ(f ) = (γ(x , u,∇u)∂νu)|∂Ω

where ν is the unit outer normal to ∂Ω.

Theorem (Cârstea, Feizmohammadi, Kian, Krupchyk and Uhlmann,
2021[1])

Let n ≥ 3, assume that γ1, γ2 : Ω̄× C× Cn → C is C∞ in x , real-analytic
in other variables and Λγ1 = Λγ2 , then γ1 = γ2 in Ω̄× C× Cn.
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Sketch of the Proof

Let λ = (ζ, µ) = (λ0, λ1, . . . , λn) ∈ C× Cn, by writing the Taylor series of
γ

γj(x , λ) =
∞∑
k=0

1

k!
γ
(k)
j (x , 0;λ, . . . , λ︸ ︷︷ ︸

k times

), x ∈ Ω, j = 1, 2

We can linearize the problem and obtain∑
(l1,...,lm+1)∈π(m+1)

∑n
j1,...,jm=0

∫
Ω T j1...jm(x) (ul1 ,∇ul1)j1 . . . (ulm ,∇ulm)jm

∇ulm+1 · ∇um+2dx = 0

for all ul ∈ C∞(Ω̄) solving ∇ · (γ0∇ul) = 0 in Ω, l = 1, . . . ,m + 2, where

T j1...jm(x) :=
(
∂λj1 . . . ∂λjmγ1

)
(x , 0)−

(
∂λj1 . . . ∂λjmγ2

)
(x , 0),

γ0 := γ1(x , 0) = γ2(x , 0)

and (ul ,∇ul)j , j = 0, 1, . . . , n, stands for the jth component of the vector
(ul , ∂x1ul , . . . , ∂xnul).
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Sketch of the Proof
For m = 1, we have

0 =
∑

(l1,l2)∈π(2)

n∑
j=0

∫
Ω

T j(x) (ul1 ,∇ul1)j ∇ul2 · ∇u3dx

We’ll use the fact that

span
{
γ0∇v1 · ∇v2 : vj ∈ C∞(Ω̄),∇ · (γ0∇vj) = 0, j = 1, 2

}
is dense in L2(Ω).

For m = 2, we have

0 =
∑

(l1,l2,l3)∈π(3)

n∑
j,k=0

∫
Ω

T jk(x) (ul1 ,∇ul1)j (ul2 ,∇ul2)k ∇ul3 · ∇u4dx

Construct CGO solutions as in the linear problem

Set amplitudes being supported near a ray

{x ∈ Rn : x = p + t Re ζ, t ∈ R} .

Use solutions Uλζ ,U−λζ ,Uλζ̃ ,U−λζ̃ ∈ C∞(Ω̄) of the form

U±λζ(x) = e±λζ·xγ0(x)
− 1

2 (a(x) + r±λζ(x))

With properly chosen ζ, ζ̃, a, ã, show T ij = 0 by inverse Fourier transform.

Ruirui Wu (UW) Quasilinear anisotropic Calderón Problem June 6, 2024 7 / 32



Sketch of the Proof
For m = 1, we have

0 =
∑

(l1,l2)∈π(2)

n∑
j=0

∫
Ω

T j(x) (ul1 ,∇ul1)j ∇ul2 · ∇u3dx

We’ll use the fact that

span
{
γ0∇v1 · ∇v2 : vj ∈ C∞(Ω̄),∇ · (γ0∇vj) = 0, j = 1, 2

}
is dense in L2(Ω).

For m = 2, we have

0 =
∑

(l1,l2,l3)∈π(3)

n∑
j,k=0

∫
Ω

T jk(x) (ul1 ,∇ul1)j (ul2 ,∇ul2)k ∇ul3 · ∇u4dx

Construct CGO solutions as in the linear problem

Set amplitudes being supported near a ray

{x ∈ Rn : x = p + t Re ζ, t ∈ R} .

Use solutions Uλζ ,U−λζ ,Uλζ̃ ,U−λζ̃ ∈ C∞(Ω̄) of the form

U±λζ(x) = e±λζ·xγ0(x)
− 1

2 (a(x) + r±λζ(x))
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Review: Anisotropic Problem

In applications, muscle tissues (e.g. heart muscle) have anisotropic
conductivity

There exists a natural obstruction in the unique determination in the
anisotropic problem

Let A = (Aij) be an n × n matrix conductivity in the C 1,α(Ω̄) class,
0 < α < 1, and Φ : Ω̄ → Ω̄ be a C 2,α diffeomorphism which is the
identity map on ∂Ω, define

(HΦA) (x) =
(DΦ(x))TA(x)(DΦ(x))

|DΦ|
◦ Φ−1(x)

where DΦ denotes the Jacobian matrix of Φ and |DΦ| = det(DΦ),
then

ΛHΦA = ΛA
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In dimension 2
In dimension 2, we have isothermal coordinates which can reduce
the anisotropoic case to the isotropic case

Lemma (Isothermal Coordinates)

Let σ be a bounded and positive definite 2× 2 matrix, there exists
diffeomorphism F : C → C such that

F (z) = z +O
(
1

z

)
as |z | → ∞

and such that

(F∗σ) (z) = σ̃(z) := det
(
σ
(
F−1(z)

)) 1
2 .

where F∗σ(y) =
1

JF (x)
DF (x)σ(x)DF (x)t

∣∣∣∣
x=F−1(y)

,

is the push-forward of the conductivity σ by F .
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Anisotropoic Quasilinear Problem

Theorem (Sun and Uhlmann, 1997 [3])

Let n = 2, A1(x , u) and A2(x , u) be quasilinear coefficient matrices in
C 2,α(Ω̄× R) such that ΛA1 = ΛA2 . Then there exists a C 3,α

diffeomorphism Φ : Ω̄ → Ω̄ with Φ|∂Ω = identity, such that A2 = HΦA1.

Theorem (Sun and Uhlmann, 1997 [3])

Let n ≥ 3, A1(x , u) and A2(x , u) be real-analytic quasilinear coefficient
matrices such that ΛA1 = ΛA2 . Assume that either A1 or A2 extends to a
real-analytic quasilinear coefficient matrix on Rn. Then there exists a
real-analytic diffeomorphism Φ : Ω̄ → Ω̄ with Φ|∂Ω = identity, such that
A2 = HΦA1.
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Sketch of the Proof

Denote At(x) = A(x , t).
Then by first order linearization, for any f ∈ C 2,α(∂Ω), 0 < α < 1, t ∈ R

lim
s→0

∥∥∥∥1s ΛA(t + sf )− ΛAt (f )

∥∥∥∥
W

1− 1
p ,p

(∂Ω)

= 0.

By result for the linear anisotropic case, for each fixed t, there exists a
C 3,α diffeomorphism Φt when n = 2 and a real analytic one when n ≥ 3,
and the identity at the boundary such that

At
2 = HΦtAt

1.

We want to show that Φt is independent on t, which can be reduced to
show (

∂A1

∂t
− ∂A2

∂t

)∣∣∣∣
t=0

= 0

by differentiating the original equation with respect to t.
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Sketch of the Proof
By second-order linearization, we have∫

Ω
∇u1 · At(x , t)∇u22dx = 2

∫
∂Ω

f1
d

dt

(
t−1ΛA (t + sf2)

)∣∣∣∣
t=0

dx ,

where ui is the solution to the boundary value problem with ui |∂Ω = fi .

This gives ∫
Ω
∇u · B(x)∇ (u1u2) dx = 0

where B =
(
∂A1
∂t − ∂A2

∂t

)∣∣∣
t=0

.

Use the density result as following:
(a)If

∫
Ω
h(x) · ∇ (u1u2) dx = 0

for solutions ui , then h(x) lies in the tangent space Tx(∂Ω) for all x ∈ ∂Ω.

(b)Let A be a linear coefficient matrix in C 2,α(Ω̄). Define

DA = SpanL2(Ω)

{
uv ; u, v ∈ C 3,α(Ω̄),∇ · A∇u = ∇ · A∇v = 0

}
.

Then if l ⊥ DA, then l = 0.
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Quasilinear anisotropic problem in dimension 2

Consider the boundary value problem{
∇ · (A(x , u,∇u)∇u) = 0 in Ω,

u = f on ∂Ω.

Define the Dirichlet to Neumann map as follows:

Λγ(f ) = (A(x , u,∇u)∂νu)|∂Ω

where ν is the unit outer normal to ∂Ω.

Theorem (Liimatainen-W, 2024)

Let n = 2, A1 and A2 be quasilinear anisotropic conductivities such that
ΛA1(f ) = ΛA2(f ), for all f in C 2,α(∂Ω) small, then there exists a W 1,2 diffeomorphism Φ
which is the identity map on the boundary such that A2 = HΦ(A1) where

(HΦA) (x , t) =
(DΦ(x))TA(x , t)(DΦ(x))

|DΦ| ◦ Φ−1(x)

.
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Main idea of the proof

- Reduce to the isotropic case using isothermal coordinates;

- Higher order linearizations:
Writing down the Taylor series of γ, we obtain∑

(l1,...,lm+1)∈π(m+1)

∑n
j1,...,jm=0

∫
Ω T j1...jm(x) (ul1 ,∇ul1)j1 . . . (ulm ,∇ulm)jm

∇ulm+1 · ∇um+2dx = 0

for all ul ∈ C∞(Ω̄) solving ∇ · (γ0∇ul) = 0 in Ω, l = 1, . . . ,m + 2, where

T j1...jm(x) :=
(
∂λj1 . . . ∂λjmγ1

)
(x , 0)−

(
∂λj1 . . . ∂λjmγ2

)
(x , 0),

γ0 := γ1(x , 0) = γ2(x , 0)

- Use singular solutions for boundary determination;

- Use Buhkgeim’s CGO solutions and limiting Carleman weights to apply
the method of stationary phase
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Boundary determination

Use singular solutions: let ν be an arbitrary outer pointing
nontangential vector of Ω at x0, and zσ = x0 + σν for some σ > 0.
Then we have solution u(x) to ∇ · (γ0∇u) = 0 with singularity at zσ:

u(x) = log |x − zσ|+ w(x − zσ)

where ω satisfies

|ωn(x)|+ |x | |∇ωn(x)| ≤ C |x |β, x ∈ Ω

with 0 < β < 1.

e.g. m = 1, ∫
Ω
T 0(x)∇u1 · ∇u2dx = 0

let u1 = u2 = u =⇒ T0(x0) = 0 for x0 ∈ ∂Ω.

Then let u1 = u2 = u3 = u =⇒ T1(x0)∂1u(x0) + T 2(x0)∂2u(x0) = 0
for x0 ∈ ∂Ω.
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Bukhgeim’s CGO Solutions

Bukhgeim constructed CGO solutions to the equation (∆ + q)u = 0 in
dimension 2, by considering the system

(D + Q)u = 0

where

D =

[
2∂̄ 0
0 2∂

]
, Q =

[
0 −1
q 0

]
, u =

[
u1
u2

]

Choose a holomorphic function ψ and let

Φ =

[
ψ 0
0 ψ̄

]
, φ(x) = 2 Imψ

we seek solutions of the form

u = eΦ/h(v + w)
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Bukhgeim’s CGO Solutions
In the algebraic computations, we would encounter the Cauchy operator

∂
−1

defined by

(∂
−1

u)(z) =
1

π

∫
Ω

u(w)

z − w
dw , dw = dw1 dw2

which satisfies ∂̄−1∂̄ = id ; similarly ∂−1 satisfying ∂−1∂ = id .

For convenience, we denote

∂̄−1
φ f := ∂̄−1e−iφ/hf , ∂−1

φ f := ∂−1e iφ/hf

Buhkhgeim found solutions to the equation (∆ + q)u = 0

u = eψ/h(v + rh),

rh = (I − S)−1Sv =
∞∑
n=1

Snv

for small h > 0, where v is holomorphic, Su = −1
4 ∂̄

−1
φ (∂−1

φ (qu)).
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Bukhgeim’s CGO solutions
Symmetrically, we also have solutions of the form

ut = eψ̄/h(v̄ + r̃h),

r̃h =
∞∑
n=1

(S t)nv̄

where S tu = −1
4∂

−1
φ (∂̄−1

φ (qu)).

Using classical estimates on ∂̄−1 and ∂−1, Bukhgeim showed for any
u ∈ L2(Ω),

||Su||L2 ≤ ch1/3||u||L2
which ensures the remainder rh is well defined.
Later, Guillarmou and Tzou showed that for any u ∈ W 1,p(Ω) , there is
some ϵ > 0 such that

||∂̄−1
φ u||Lp ≤ Ch

1
2
+ϵ||u||W 1,p

which may improve the estimates for the remainder rh.
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Bukhgeim’s solutions solving the linear problem
Using these solutions, Bukhgeim proved for linear potentials

Theorem

If qj ∈ L∞(Ω) and Cq1 = Cq2 , then q1 = q2.

The proof used the following key lemma:

Lemma

Products of the form uiu
t
j are dense in L2.

To prove this, let u1 =ez
2/h(1 + rh)

ut2 =e−z̄2/h(1 + r̃h)

so that for any f ∈ L2,∫
f (z)u1u

t
2 =

∫
e(z

2−z̄2)/hf (z)(1 + rh + r̃h + rh r̃h) = 0

would imply f ≡ 0 by the stationary phase method and remainder
estimate.
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Stationary phase method

We consider the oscillatory integral

I (h) :=

∫
U
e

iφ(x)
h a(x)dx

- U ⊂ Rn is an open set

- φ ∈ C∞ (U;R), called ”phase function”

- a ∈ C∞
c (U), called ”amplitude”

- If supp a has no critical points of φ, by repeatedly integrating parts we
have I (h) = O(hN),∀N.
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Stationary phase method

- If x0 is a nondegenerate critical point of φ, then d2φ(x0) has k positive eigenvalues
and n − k negative eigenvalues for some k. We define

sgn d2φ(y0) := k − (n − k)

Theorem
Let φ ∈ C∞(U;R) have the non-degenerate critical point x0 ∈ X and assume that
φ′(x) ̸= 0 for x ̸= x0. Then there are differential operators A2ν(D) of order ≤ 2ν such
that for every compact K ⊂ X and every N ∈ N, there is a constant C = CK ,N such
that for every u ∈ C∞(X ) ∩ E ′(K)∣∣∣∣∣

∫
e

iφ(x)
h u(x)dx −

(
N−1∑
0

(A2ν (Dx) u) (x0) h
ν+ n

2

)
e

iφ(x0)
h

∣∣∣∣∣
≤ ChN+ n

2

∑
|x|≤2N+n+1

||u||C2N+n+1 .

Moreover A0 =
(2π)

n
2 · e i

π
4
sgnφ′′(x0)

|detφ′′ (x0)|
1
2

.
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Key element of the proof

Lemma (Morse lemma)

Let φ ∈ C∞(U;R) and let x0 ∈ U be a non-degenerate critical point. Then there are
neighborhoods U of 0 ∈ Rn and V of x0 and a C∞ diffeomorphism H : V → U such that

φ ◦ H−1(x) = φ (x0) +
1

2

(
x2
1 + . . .+ x2

r − x2
r+1 − . . .− x2

n

)
.

Here (r , n− r) is the signature of φ′′ (x0) (so that r , n− r are respectively the number of
positive and negative eigenvalues).

-Use the Morse lemma above to reduce the problem to the quadratic stationary phase
case:

I (h) =

∫
Rn

e
i
2h

⟨Qx,x⟩a(x)dx

- Q is an invertible symmetric Heal n × n matrix, a ∈ C∞
c (Rn).

-Note: φ(x) = 1
2
⟨Qx , x⟩ is a Morese function, the only critical part is x = 0, and

d2
φ(0) = Q.
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Key element of the proof

Theorem (Quadratic stationary phase)

∫
e

i⟨x,Qx⟩
h

/2u(x)dx =
N−1∑
k=0

(2π)
n
2 e i

π
4
sgnQhk+ n

2

k!| detQ| 12

(
1

2i

〈
Dx ,Q

−1Dx

〉)k

u(0) + SN(u, λ),

where |SN(u, h)| ≤ CQ.ε(N!)−1hN+ n
2

∥∥∥∥∥
(
1

2

〈
D,Q−1D

〉)N

u

∥∥∥∥∥
H

n
2
+ϵ

(Rn)

-By Fourier transform,∫
e i⟨x ,Qx⟩/2hu(x)dx = (2π)−

n
2 h

n
2 | detQ|−

1
2 e i

π
4
sgnQ

∫
e−ih(ξ,Q−1ξ⟩/2û(ξ)dξ.

-Use the Taylor expansion

e
h
2i ⟨Q−1ξ,ξ⟩ ∼

h→0

∑∞
j=0

1
j!(

h
2i ⟨Q−1ξ,ξ⟩)j

-Inverse Fourier transform
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h
2i ⟨Q−1ξ,ξ⟩)j

-Inverse Fourier transform
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Example
Back to the integral identity in Bukhgeim’s paper for linear problem:∫

e(z
2−z̄2)/hf (z)(1 + rh + r̃h + rh r̃h) = 0

By stationary phase,∫
e(z

2−z̄2)/hf (z) = Chf (0) + O(h2)

for some constant C .

By remainder estimate,∫
e(z

2−z̄2)/hf (z)rh = O(h1+ϵ)∫
e(z

2−z̄2)/hf (z)rh r̃h = O(h1+ϵ)

Therefore, we can show f (0) = 0, and similarly, we can show f vanishes at
all the other points.
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Quasilinear anisotropic problem in dimension 2: first try
It would be natural to first try solutions of the form

u1 =
1

√
γ0

ez
2/h(1 + rh)

ut2 =
1

√
γ0

e−z̄2/h(1 + r̃h)

for the quasilinear problem. Recall the integral identity we have in this
case:∑

(l1,...,lm+1)∈π(m+1)

∑n
j1,...,jm=0

∫
Ω T j1...jm(x) (ul1 ,∇ul1)j1 . . . (ulm ,∇ulm)jm

∇ulm+1 · ∇um+2dx = 0

Unfortunately, it turns out that the remainder estimate may not be good
enough since we are taking derivatives of the solution. As an example
case, we look at m = 2, where the integral identity reads

∑
(l1,l2,l3)∈π(3)

2∑
j ,k=0

∫
Ω
T jk(x) (ul1 ,∇ul1)j (ul2 ,∇ul2)k ∇ul3 · ∇u4dx = 0

∑
(l1,...,lm+1)∈π(m+1)

∑n
j1,...,jm=0

∫
Ω T j1...jm(x) (ul1 ,∇ul1)j1 . . .

(ulm ,∇ulm)jm ∇ulm+1 · ∇um+2dx = 0
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Quasilinear anisotropic problem: first try

We mention here that by choosing u1 = u2 = 1, and then u1 = 0, we would get an
integral identity that already appears in the previous case m = 1. Therefore, assume
m = 1 case is solved, we have T 00 = T 01 = T 02 = 0, and obtain

∑
(l1,l2,l3)∈π(3)

2∑
j,k=1

∫
T jk(x)∂xj ul1∂xkul2∇ul3 · ∇u4dx = 0

Now let

u1 = u2 =
1

√
γ0

e
1
2
z2/h(1 + rh)

u3 = u4 =
1

√
γ0

e−
1
2
z̄2/h(1 + r̃h)

We focus first on the term in the expansion where the derivatives hit the phases:∫
1

h4γ2
0

(T 11 + T 22)e(z
2−z̄2)/hz2z̄2(1 + rh)(1 + rh)(1 + r̃h)(1 + r̃h)

which by stationary phase would include the term C
h
(T 11 +T 22)(0) for some constant C .
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Quasilinear anisotropic problem: first try

However, if one of the derivative hits the 1√
γ0

instead of the phase, we get∫
1

h3γ
3/2
0

∂

(
1

√
γ0

)
Te(z

2−z̄2)/hzz̄2(1 + rh)(1 + rh)(1 + r̃h)(1 + r̃h)

which includes the term∫
1

h3γ
3/2
0

∂

(
1

√
γ0

)
Te(z

2−z̄2)/hzz̄2rh = O(h1+ϵ−3) = O(h−2+ϵ)

Therefore, we may not ensure that the above term involving the remainder
is of smaller size compared to the principal term C

h (T
11 + T 22)(0).
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Solution
To solve the above problem, we instead choose phase functions with no
critical point. Consider without loss of generality

u =
1
√
γ
e(z+

1
2
z2)/h(1 + rh),

rh =
∞∑
n=1

Sn1

Integrating by parts, we have

∂̄−1e iφ/hf =
ih

2

[
e iφ/h

f

∂̄φ
+

ih

2
∂̄−1

(
e iφ/h∂̄

(
f

∂̄φ

))]
,

which holds for any f ∈ C 1
0 (Ω̄). Thus, for φ having no critical point in Ω.

Using Calderón-Zygmund estimate, we have

||∂̄−1e iφ/hf ||Lp ≤ Ch||f ||W 1,p

for all p ∈ (1,∞). This leads to better estimate for remainders in the
above solutions: ||rh||L2 , ||∂rh||L2 , ||∂̄rh||L2 = O(h)
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Solution

We mention that the idea of choosing phases without critical points has previously
appeared in limiting Carleman weights. What is special in our case is that in dimension
2, we may have the explicit form for the remainder rh using Bukhgeim’s construction.

Let us check how these solutions help solve the problematic case. Again, consider the
case m = 2, where we have the integral identity

∑
(l1,l2,l3)∈π(3)

2∑
j,k=1

∫
T jk(x)∂xj ul1∂xkul2∇ul3 · ∇u4dx = 0

Let u1 =
1

√
γ0

e(z+
1
2
z2)/h(1 + r1),

u2 =
1

√
γ0

e(−z+ 1
2
z2)/h(1 + r2),

u3 =
1

√
γ0

e(−z̄− 1
2
z̄2)/h(1 + r3)

u4 =
1

√
γ0

e(z̄−
1
2
z̄2)/h(1 + r4)
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Solution
Now if the derivatives all hit the exponential component of the solutions, we will get∫

1

h4γ2
0

(T 11+T 22)e(z
2−z̄2)/h(1+z)(−1+z)(1− z̄)(−1− z̄)(1+ r1)(1+ r2)(1+ r3)(1+ r4)

which includes the term∫
1

h4γ2
0

(T 11 + T 22)e(z
2−z̄2)/h =

C

h3
(T 11 + T 22)(0)

while by remainder estimates, we can check all the terms involving the remainder term
are O( 1

h2
).

Therefore, we can show (T 11 + T 22)(0) = 0, and similarly we can prove T 11 + T 22

vanishes at all the other points.
Similarly, by choosing other sets of solutions u1, u2, u3, u4 properly, we get a system of
linear equatoins for T 11,T 12,T 22. In particular, for m = 2, we obtain

T 11 + 2iT 12 − T 22 =0

T 11 + T 22 =0

T 11 − 2iT 12 − T 22 =0

which has the unique solution T 11 = T 12 = T 22 = 0. The proof for other m is similar.
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Thank you!
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