Calderón Problem with quasilinear anisotropic conductivity

Ruirui Wu
University of Washington

$$
\text { June 6, } 2024
$$

Calderón Inverse Problem

Consider the boundary value problem

$$
\begin{aligned}
\operatorname{div}(\gamma \nabla u) & =0, \\
u_{\left.\right|_{\partial \Omega}} & =f .
\end{aligned}
$$

The measurements that one can perform on the boundary are the voltage $u_{\left.\right|_{\partial \Omega}}$ and the current $\gamma(\partial u / \partial \nu)_{\left.\right|_{\partial \Omega}}$, where ν denotes the unit outer normal to the boundary.
If $\gamma \in L^{\infty}(\Omega)$, for every $f \in H^{1 / 2}(\partial \Omega)$ we can define the Dirichlet-to-Neumann map

$$
\Lambda_{\gamma} f=\left.\gamma \frac{\partial u}{\partial v}\right|_{\partial \Omega}
$$

which has values in $H^{-1 / 2}(\partial \Omega)$.
Calderón's inverse problem: Does Λ_{γ} determine γ ?

Review: CGO Solutions

Theorem (Sylvester-UhImann, 1986, 1987 [4])

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set, and let $q \in L^{\infty}(\Omega)$. There is a constant C_{0} depending only on Ω and n, such that for any $\zeta \in \mathbb{C}^{n}$ satisfying $\zeta \cdot \zeta=0$ and $|\zeta| \geq \max \left(C_{0}\|q\|_{L^{\infty}(\Omega)}, 1\right)$, and for any function $a \in H^{2}(\Omega)$ satisfying

$$
\zeta \cdot \nabla a=0 \quad \text { in } \Omega
$$

the equation $(-\Delta+q) u=0$ in Ω has a solution $u \in H^{2}(\Omega)$ of the form

$$
u(x)=e^{i \zeta \cdot x}(a+r)
$$

where $r \in H^{2}(\Omega)$ satisfies

$$
\|r\|_{H^{k}(\Omega)} \leq C_{0}|\zeta|^{k-1}\|(-\Delta+q) a\|_{L^{2}(\Omega)}, \quad k=0,1,2
$$

Calderón problem with quasilinear conductivity

Consider the boundary value problem

$$
\begin{cases}\nabla \cdot(\gamma(x, u) \nabla u)=0 & \text { in } \Omega \\ u=f & \text { on } \partial \Omega\end{cases}
$$

We define the associated Dirichlet-to-Neumann map by

$$
\Lambda_{\gamma}(f)=\left.\left(\gamma(x, u) \partial_{\nu} u\right)\right|_{\partial \Omega}
$$

where ν is the unit outer normal to $\partial \Omega$.

Theorem (Sun 1996 [2])

Let $n \geq 2$. Assume $\gamma_{i}, \in C^{1,1}(\bar{\Omega} \times[-T, T]) \forall T>0, i=1,2$, and $\Lambda_{\gamma_{1}}=\Lambda_{\gamma_{2}}$. Then $\gamma_{1}(x, t)=\gamma_{2}(x, t)$ on $\bar{\Omega} \times \mathbb{R}$.

The linearization formula below is the key to the proof:

$$
\lim _{s \rightarrow 0}\left\|\frac{1}{s} \Lambda_{\gamma}(t+s f)-\Lambda_{\gamma^{t}}(f)\right\|_{W^{1-\frac{1}{p}, p}(\partial \Omega)}=0 .
$$

where $\gamma^{t}(x)=\gamma(x, t)$.

Calderón problem with quasilinear conductivity

In addition, we consider the quasilinear conductivity depending also on ∇u :

$$
\begin{cases}\nabla \cdot(\gamma(x, u, \nabla u) \nabla u)=0 & \text { in } \Omega \\ u=f & \text { on } \partial \Omega\end{cases}
$$

The associated Dirichlet-to-Neumann map is given by

$$
\Lambda_{\gamma}(f)=\left.\left(\gamma(x, u, \nabla u) \partial_{\nu} u\right)\right|_{\partial \Omega}
$$

where ν is the unit outer normal to $\partial \Omega$.

Theorem (Cârstea, Feizmohammadi, Kian, Krupchyk and Uhlmann, 2021[1])

Let $n \geq 3$, assume that $\gamma_{1}, \gamma_{2}: \bar{\Omega} \times \mathbb{C} \times \mathbb{C}^{n} \rightarrow \mathbb{C}$ is C^{∞} in x, real-analytic in other variables and $\Lambda_{\gamma_{1}}=\Lambda_{\gamma_{2}}$, then $\gamma_{1}=\gamma_{2}$ in $\bar{\Omega} \times \mathbb{C} \times \mathbb{C}^{n}$.

Sketch of the Proof

Let $\lambda=(\zeta, \mu)=\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{C} \times \mathbb{C}^{n}$, by writing the Taylor series of γ

$$
\gamma_{j}(x, \lambda)=\sum_{k=0}^{\infty} \frac{1}{k!} \gamma_{j}^{(k)}(x, 0 ; \underbrace{\lambda, \ldots, \lambda}_{k \text { times }}), \quad x \in \Omega, \quad j=1,2
$$

We can linearize the problem and obtain

$$
\begin{array}{r}
\sum_{\left(l_{1}, \ldots, l_{m+1}\right) \in \pi(m+1)} \sum_{j_{1}, \ldots, j_{m}=0}^{n} \int_{\Omega} T^{j_{1} \ldots j_{m}}(x)\left(u_{l_{1}}, \nabla u_{l_{1}}\right)_{j_{1}} \ldots\left(u_{l_{m}}, \nabla u_{l_{m}}\right)_{j_{m}} \\
\nabla u_{l_{m+1}} \cdot \nabla u_{m+2} d x=0
\end{array}
$$

for all $u_{l} \in C^{\infty}(\bar{\Omega})$ solving $\nabla \cdot\left(\gamma_{0} \nabla u_{l}\right)=0$ in $\Omega, I=1, \ldots, m+2$, where

$$
\begin{gathered}
T^{j_{1} \ldots j_{m}}(x):=\left(\partial_{\lambda_{j_{1}}} \ldots \partial_{\lambda_{j_{m}}} \gamma_{1}\right)(x, 0)-\left(\partial_{\lambda_{j_{1}}} \ldots \partial_{\lambda_{j_{m}}} \gamma_{2}\right)(x, 0) \\
\gamma_{0}:=\gamma_{1}(x, 0)=\gamma_{2}(x, 0)
\end{gathered}
$$

and $\left(u_{l}, \nabla u_{l}\right)_{j}, j=0,1, \ldots, n$, stands for the j th component of the vector $\left(u_{l}, \partial_{x_{1}} u_{l}, \ldots, \partial_{x_{n}} u_{l}\right)$.

Sketch of the Proof

For $m=1$, we have

$$
0=\sum_{\left(l_{1}, l_{2}\right) \in \pi(2)} \sum_{j=0}^{n} \int_{\Omega} T^{j}(x)\left(u_{l_{1}}, \nabla u_{l_{1}}\right)_{j} \nabla u_{l_{2}} \cdot \nabla u_{3} d x
$$

We'll use the fact that

$$
\operatorname{span}\left\{\gamma_{0} \nabla v_{1} \cdot \nabla v_{2}: v_{j} \in C^{\infty}(\bar{\Omega}), \nabla \cdot\left(\gamma_{0} \nabla v_{j}\right)=0, j=1,2\right\}
$$

is dense in $L^{2}(\Omega)$.

Sketch of the Proof

For $m=1$, we have

$$
0=\sum_{\left(l_{1}, l_{2}\right) \in \pi(2)} \sum_{j=0}^{n} \int_{\Omega} T^{j}(x)\left(u_{l_{1}}, \nabla u_{l_{1}}\right)_{j} \nabla u_{l_{2}} \cdot \nabla u_{3} d x
$$

We'll use the fact that

$$
\operatorname{span}\left\{\gamma_{0} \nabla v_{1} \cdot \nabla v_{2}: v_{j} \in C^{\infty}(\bar{\Omega}), \nabla \cdot\left(\gamma_{0} \nabla v_{j}\right)=0, j=1,2\right\}
$$

is dense in $L^{2}(\Omega)$.

Sketch of the Proof

For $m=1$, we have

$$
0=\sum_{\left(l_{1}, l_{2}\right) \in \pi(2)} \sum_{j=0}^{n} \int_{\Omega} T^{j}(x)\left(u_{l_{1}}, \nabla u_{l_{1}}\right)_{j} \nabla u_{l_{2}} \cdot \nabla u_{3} d x
$$

We'll use the fact that

$$
\operatorname{span}\left\{\gamma_{0} \nabla v_{1} \cdot \nabla v_{2}: v_{j} \in C^{\infty}(\bar{\Omega}), \nabla \cdot\left(\gamma_{0} \nabla v_{j}\right)=0, j=1,2\right\}
$$

is dense in $L^{2}(\Omega)$.
For $m=2$, we have

$$
0=\sum_{\left(l_{1}, l_{2}, l_{3}\right) \in \pi(3)} \sum_{j, k=0}^{n} \int_{\Omega} T^{j k}(x)\left(u_{l_{1}}, \nabla u_{l_{1}}\right)_{j}\left(u_{l_{2}}, \nabla u_{l_{2}}\right)_{k} \nabla u_{l_{3}} \cdot \nabla u_{4} d x
$$

Construct CGO solutions as in the linear problem

Sketch of the Proof

For $m=1$, we have

$$
0=\sum_{\left(l_{1}, l_{2}\right) \in \pi(2)} \sum_{j=0}^{n} \int_{\Omega} T^{j}(x)\left(u_{l_{1}}, \nabla u_{l_{1}}\right)_{j} \nabla u_{l_{2}} \cdot \nabla u_{3} d x
$$

We'll use the fact that

$$
\operatorname{span}\left\{\gamma_{0} \nabla v_{1} \cdot \nabla v_{2}: v_{j} \in C^{\infty}(\bar{\Omega}), \nabla \cdot\left(\gamma_{0} \nabla v_{j}\right)=0, j=1,2\right\}
$$

is dense in $L^{2}(\Omega)$.
For $m=2$, we have

$$
0=\sum_{\left(l_{1}, l_{2}, l_{3}\right) \in \pi(3)} \sum_{j, k=0}^{n} \int_{\Omega} T^{j k}(x)\left(u_{l_{1}}, \nabla u_{l_{1}}\right)_{j}\left(u_{l_{2}}, \nabla u_{l_{2}}\right)_{k} \nabla u_{l_{3}} \cdot \nabla u_{4} d x
$$

Construct CGO solutions as in the linear problem
Set amplitudes being supported near a ray

$$
\left\{x \in \mathbb{R}^{n}: x=p+t \operatorname{Re} \zeta, t \in \mathbb{R}\right\}
$$

Use solutions $U_{\lambda \zeta}, U_{-\lambda \zeta}, U_{\lambda \tilde{\zeta}}, U_{-\lambda \tilde{\zeta}} \in C^{\infty}(\bar{\Omega})$ of the form

$$
U_{ \pm \lambda \zeta}(x)=e^{ \pm \lambda \zeta \cdot x} \gamma_{0}(x)^{-\frac{1}{2}}\left(a(x)+r_{ \pm \lambda \zeta}(x)\right)
$$

With properly chosen $\zeta, \tilde{\zeta}$, a, ã, show $T^{i j}=0$ by inverse Fourier transform.

Review: Anisotropic Problem

- In applications, muscle tissues (e.g. heart muscle) have anisotropic conductivity
- There exists a natural obstruction in the unique determination in the anisotropic problem

Review: Anisotropic Problem

- In applications, muscle tissues (e.g. heart muscle) have anisotropic conductivity
- There exists a natural obstruction in the unique determination in the anisotropic problem
- Let $A=\left(A_{i j}\right)$ be an $n \times n$ matrix conductivity in the $C^{1, \alpha}(\bar{\Omega})$ class, $0<\alpha<1$, and $\Phi: \bar{\Omega} \rightarrow \bar{\Omega}$ be a $C^{2, \alpha}$ diffeomorphism which is the identity map on $\partial \Omega$, define

$$
\left(H_{\Phi} A\right)(x)=\frac{(D \Phi(x))^{T} A(x)(D \Phi(x))}{|D \Phi|} \circ \Phi^{-1}(x)
$$

where $D \Phi$ denotes the Jacobian matrix of Φ and $|D \Phi|=\operatorname{det}(D \Phi)$, then

$$
\Lambda_{H_{\Phi} A}=\Lambda_{A}
$$

In dimension 2

- In dimension 2, we have isothermal coordinates which can reduce the anisotropoic case to the isotropic case

In dimension 2

- In dimension 2, we have isothermal coordinates which can reduce the anisotropoic case to the isotropic case

Lemma (Isothermal Coordinates)

Let σ be a bounded and positive definite 2×2 matrix, there exists diffeomorphism $F: \mathbb{C} \rightarrow \mathbb{C}$ such that

$$
F(z)=z+\mathcal{O}\left(\frac{1}{z}\right) \quad \text { as }|z| \rightarrow \infty
$$

and such that
where

$$
\begin{gathered}
\left(F_{*} \sigma\right)(z)=\tilde{\sigma}(z):=\operatorname{det}\left(\sigma\left(F^{-1}(z)\right)\right)^{\frac{1}{2}} \\
F_{*} \sigma(y)=\left.\frac{1}{J_{F}(x)} D F(x) \sigma(x) D F(x)^{t}\right|_{x=F^{-1}(y)}
\end{gathered}
$$

is the push-forward of the conductivity σ by F.

Anisotropoic Quasilinear Problem

Theorem (Sun and UhImann, 1997 [3])

Let $n=2, A_{1}(x, u)$ and $A_{2}(x, u)$ be quasilinear coefficient matrices in $C^{2, \alpha}(\bar{\Omega} \times \mathbb{R})$ such that $\Lambda_{\bar{A}_{1}}=\Lambda_{A_{2}}$. Then there exists a $C^{3, \alpha}$ diffeomorphism $\Phi: \bar{\Omega} \rightarrow \bar{\Omega}$ with $\left.\Phi\right|_{\partial \Omega}=$ identity, such that $A_{2}=H_{\Phi} A_{1}$.

Anisotropoic Quasilinear Problem

Theorem (Sun and Uhlmann, 1997 [3])

Let $n=2, A_{1}(x, u)$ and $A_{2}(x, u)$ be quasilinear coefficient matrices in $C^{2, \alpha}(\bar{\Omega} \times \mathbb{R})$ such that $\Lambda_{A_{1}}=\Lambda_{A_{2}}$. Then there exists a $C^{3, \alpha}$ diffeomorphism $\Phi: \bar{\Omega} \rightarrow \bar{\Omega}$ with $\left.\Phi\right|_{\partial \Omega}=$ identity, such that $A_{2}=H_{\Phi} A_{1}$.

Theorem (Sun and UhImann, 1997 [3])

Let $n \geq 3, A_{1}(x, u)$ and $A_{2}(x, u)$ be real-analytic quasilinear coefficient matrices such that $\Lambda_{A_{1}}=\Lambda_{A_{2}}$. Assume that either A_{1} or A_{2} extends to a real-analytic quasilinear coefficient matrix on \mathbb{R}^{n}. Then there exists a real-analytic diffeomorphism $\Phi: \bar{\Omega} \rightarrow \bar{\Omega}$ with $\left.\Phi\right|_{\partial \Omega}=$ identity, such that $A_{2}=H_{\Phi} A_{1}$.

Sketch of the Proof

Denote $A^{t}(x)=A(x, t)$.

Then by first order linearization, for any $f \in C^{2, \alpha}(\partial \Omega), 0<\alpha<1, t \in \mathbb{R}$

$$
\lim _{s \rightarrow 0}\left\|\frac{1}{s} \Lambda_{A}(t+s f)-\Lambda_{A^{t}}(f)\right\|_{W^{1-\frac{1}{p}, p}(\partial \Omega)}=0
$$

Sketch of the Proof

Denote $A^{t}(x)=A(x, t)$.

Then by first order linearization, for any $f \in C^{2, \alpha}(\partial \Omega), 0<\alpha<1, t \in \mathbb{R}$

$$
\lim _{s \rightarrow 0}\left\|\frac{1}{s} \Lambda_{A}(t+s f)-\Lambda_{A^{t}}(f)\right\|_{W^{1-\frac{1}{p}, p}(\partial \Omega)}=0
$$

By result for the linear anisotropic case, for each fixed t, there exists a $C^{3, \alpha}$ diffeomorphism Φ^{t} when $n=2$ and a real analytic one when $n \geq 3$, and the identity at the boundary such that

$$
A_{2}^{t}=H_{\Phi t} A_{1}^{t} .
$$

Sketch of the Proof

Denote $A^{t}(x)=A(x, t)$.

Then by first order linearization, for any $f \in C^{2, \alpha}(\partial \Omega), 0<\alpha<1, t \in \mathbb{R}$

$$
\lim _{s \rightarrow 0}\left\|\frac{1}{s} \Lambda_{A}(t+s f)-\Lambda_{A^{t}}(f)\right\|_{W^{1-\frac{1}{p}, p}(\partial \Omega)}=0
$$

By result for the linear anisotropic case, for each fixed t, there exists a $C^{3, \alpha}$ diffeomorphism Φ^{t} when $n=2$ and a real analytic one when $n \geq 3$, and the identity at the boundary such that

$$
A_{2}^{t}=H_{\phi t} A_{1}^{t} .
$$

We want to show that Φ^{t} is independent on t, which can be reduced to show

$$
\left.\left(\frac{\partial A_{1}}{\partial t}-\frac{\partial A_{2}}{\partial t}\right)\right|_{t=0}=0
$$

by differentiating the original equation with respect to t.

Sketch of the Proof

By second-order linearization, we have

$$
\int_{\Omega} \nabla u_{1} \cdot A_{t}(x, t) \nabla u_{2}^{2} d x=\left.2 \int_{\partial \Omega} f_{1} \frac{d}{d t}\left(t^{-1} \Lambda_{A}\left(t+s f_{2}\right)\right)\right|_{t=0} d x
$$

where u_{i} is the solution to the boundary value problem with $\left.u_{i}\right|_{\partial \Omega}=f_{i}$.

Sketch of the Proof

By second-order linearization, we have

$$
\int_{\Omega} \nabla u_{1} \cdot A_{t}(x, t) \nabla u_{2}^{2} d x=\left.2 \int_{\partial \Omega} f_{1} \frac{d}{d t}\left(t^{-1} \Lambda_{A}\left(t+s f_{2}\right)\right)\right|_{t=0} d x
$$

where u_{i} is the solution to the boundary value problem with $\left.u_{i}\right|_{\partial \Omega}=f_{i}$. This gives

$$
\int_{\Omega} \nabla u \cdot B(x) \nabla\left(u_{1} u_{2}\right) d x=0
$$

where $B=\left.\left(\frac{\partial A_{1}}{\partial t}-\frac{\partial A_{2}}{\partial t}\right)\right|_{t=0}$.

Sketch of the Proof

By second-order linearization, we have

$$
\int_{\Omega} \nabla u_{1} \cdot A_{t}(x, t) \nabla u_{2}^{2} d x=\left.2 \int_{\partial \Omega} f_{1} \frac{d}{d t}\left(t^{-1} \Lambda_{A}\left(t+s f_{2}\right)\right)\right|_{t=0} d x
$$

where u_{i} is the solution to the boundary value problem with $\left.u_{i}\right|_{\partial \Omega}=f_{i}$.
This gives

$$
\int_{\Omega} \nabla u \cdot B(x) \nabla\left(u_{1} u_{2}\right) d x=0
$$

where $B=\left.\left(\frac{\partial A_{1}}{\partial t}-\frac{\partial A_{2}}{\partial t}\right)\right|_{t=0}$.
Use the density result as following: (a)If

$$
\int_{\Omega} h(x) \cdot \nabla\left(u_{1} u_{2}\right) d x=0
$$

for solutions u_{i}, then $h(x)$ lies in the tangent space $T_{x}(\partial \Omega)$ for all $x \in \partial \Omega$.

Sketch of the Proof

By second-order linearization, we have

$$
\int_{\Omega} \nabla u_{1} \cdot A_{t}(x, t) \nabla u_{2}^{2} d x=\left.2 \int_{\partial \Omega} f_{1} \frac{d}{d t}\left(t^{-1} \Lambda_{A}\left(t+s f_{2}\right)\right)\right|_{t=0} d x
$$

where u_{i} is the solution to the boundary value problem with $\left.u_{i}\right|_{\partial \Omega}=f_{i}$.
This gives

$$
\int_{\Omega} \nabla u \cdot B(x) \nabla\left(u_{1} u_{2}\right) d x=0
$$

where $B=\left.\left(\frac{\partial A_{1}}{\partial t}-\frac{\partial A_{2}}{\partial t}\right)\right|_{t=0}$.
Use the density result as following: (a)If

$$
\int_{\Omega} h(x) \cdot \nabla\left(u_{1} u_{2}\right) d x=0
$$

for solutions u_{i}, then $h(x)$ lies in the tangent space $T_{x}(\partial \Omega)$ for all $x \in \partial \Omega$.
(b)Let A be a linear coefficient matrix in $C^{2, \alpha}(\bar{\Omega})$. Define

$$
D_{A}=\operatorname{Span}_{L^{2}(\Omega)}\left\{u v ; u, v \in C^{3, \alpha}(\bar{\Omega}), \nabla \cdot A \nabla u=\nabla \cdot A \nabla v=0\right\}
$$

Then if $I \perp D_{A}$, then $I=0$.

Quasilinear anisotropic problem in dimension 2

Consider the boundary value problem

$$
\begin{cases}\nabla \cdot(A(x, u, \nabla u) \nabla u)=0 & \text { in } \Omega \\ u=f & \text { on } \partial \Omega\end{cases}
$$

Define the Dirichlet to Neumann map as follows:

$$
\Lambda_{\gamma}(f)=\left.\left(A(x, u, \nabla u) \partial_{\nu} u\right)\right|_{\partial \Omega}
$$

where ν is the unit outer normal to $\partial \Omega$.

Theorem (Liimatainen-W, 2024)

Let $n=2, A_{1}$ and A_{2} be quasilinear anisotropic conductivities such that $\Lambda_{A_{1}}(f)=\Lambda_{A_{2}}(f)$, for all f in $C^{2, \alpha}(\partial \Omega)$ small, then there exists a $W^{1,2}$ diffeomorphism Φ which is the identity map on the boundary such that $A_{2}=H_{\Phi}\left(A_{1}\right)$ where

$$
\left(H_{\Phi} A\right)(x, t)=\frac{(D \Phi(x))^{T} A(x, t)(D \Phi(x))}{|D \Phi|} \circ \Phi^{-1}(x)
$$

Main idea of the proof

- Reduce to the isotropic case using isothermal coordinates;

Main idea of the proof

- Reduce to the isotropic case using isothermal coordinates;
- Higher order linearizations:

Writing down the Taylor series of γ, we obtain

$$
\begin{array}{r}
\sum_{\left(l_{1}, \ldots, l_{m+1}\right) \in \pi(m+1)} \sum_{j_{1}, \ldots, j_{m}=0}^{n} \int_{\Omega} T^{j_{1} \ldots j_{m}}(x)\left(u_{l_{1}}, \nabla u_{l_{1}}\right)_{j_{1}} \ldots\left(u_{l_{m}}, \nabla u_{l_{m}}\right)_{j_{m}} \\
\nabla u_{l_{m+1}} \cdot \nabla u_{m+2} d x=0
\end{array}
$$

for all $u_{l} \in C^{\infty}(\bar{\Omega})$ solving $\nabla \cdot\left(\gamma_{0} \nabla u_{l}\right)=0$ in $\Omega, I=1, \ldots, m+2$, where

$$
\begin{gathered}
T^{j_{1} \ldots j_{m}}(x):=\left(\partial_{\lambda_{j_{1}}} \ldots \partial_{\lambda_{j_{m}}} \gamma_{1}\right)(x, 0)-\left(\partial_{\lambda_{j_{1}}} \ldots \partial_{\lambda_{j_{m}}} \gamma_{2}\right)(x, 0) \\
\gamma_{0}:=\gamma_{1}(x, 0)=\gamma_{2}(x, 0)
\end{gathered}
$$

Main idea of the proof

- Reduce to the isotropic case using isothermal coordinates;
- Higher order linearizations:

Writing down the Taylor series of γ, we obtain

$$
\begin{array}{r}
\sum_{\left(l_{1}, \ldots, l_{m+1}\right) \in \pi(m+1)} \sum_{j_{1}, \ldots, j_{m}=0}^{n} \int_{\Omega} T^{j_{1} \ldots j_{m}}(x)\left(u_{l_{1}}, \nabla u_{l_{1}}\right)_{j_{1}} \ldots\left(u_{l_{m}}, \nabla u_{l_{m}}\right)_{j_{m}} \\
\nabla u_{l_{m+1}} \cdot \nabla u_{m+2} d x=0
\end{array}
$$

for all $u_{l} \in C^{\infty}(\bar{\Omega})$ solving $\nabla \cdot\left(\gamma_{0} \nabla u_{l}\right)=0$ in $\Omega, I=1, \ldots, m+2$, where

$$
\begin{gathered}
T^{j_{1} \ldots j_{m}}(x):=\left(\partial_{\lambda_{j_{1}}} \ldots \partial_{\lambda_{j_{m}}} \gamma_{1}\right)(x, 0)-\left(\partial_{\lambda_{j_{1}}} \ldots \partial_{\lambda_{j_{m}}} \gamma_{2}\right)(x, 0) \\
\gamma_{0}:=\gamma_{1}(x, 0)=\gamma_{2}(x, 0)
\end{gathered}
$$

- Use singular solutions for boundary determination;

Main idea of the proof

- Reduce to the isotropic case using isothermal coordinates;
- Higher order linearizations:

Writing down the Taylor series of γ, we obtain

$$
\begin{array}{r}
\sum_{\left(l_{1}, \ldots, l_{m+1}\right) \in \pi(m+1)} \sum_{j_{1}, \ldots, j_{m}=0}^{n} \int_{\Omega} T^{j_{1} \ldots j_{m}}(x)\left(u_{l_{1}}, \nabla u_{l_{1}}\right)_{j_{1}} \ldots\left(u_{l_{m}}, \nabla u_{l_{m}}\right)_{j_{m}} \\
\nabla u_{l_{m+1}} \cdot \nabla u_{m+2} d x=0
\end{array}
$$

for all $u_{l} \in C^{\infty}(\bar{\Omega})$ solving $\nabla \cdot\left(\gamma_{0} \nabla u_{l}\right)=0$ in $\Omega, I=1, \ldots, m+2$, where

$$
\begin{gathered}
T^{j_{1} \ldots j_{m}}(x):=\left(\partial_{\lambda_{j_{1}}} \ldots \partial_{\lambda_{j_{m}}} \gamma_{1}\right)(x, 0)-\left(\partial_{\lambda_{j_{1}}} \ldots \partial_{\lambda_{j_{m}}} \gamma_{2}\right)(x, 0) \\
\gamma_{0}:=\gamma_{1}(x, 0)=\gamma_{2}(x, 0)
\end{gathered}
$$

- Use singular solutions for boundary determination;
- Use Buhkgeim's CGO solutions and limiting Carleman weights to apply the method of stationary phase

Boundary determination

- Use singular solutions: let ν be an arbitrary outer pointing nontangential vector of Ω at x_{0}, and $z_{\sigma}=x_{0}+\sigma \nu$ for some $\sigma>0$. Then we have solution $u(x)$ to $\nabla \cdot\left(\gamma_{0} \nabla u\right)=0$ with singularity at z_{σ} :

$$
u(x)=\log \left|x-z_{\sigma}\right|+w\left(x-z_{\sigma}\right)
$$

where ω satisfies

$$
\left|\omega_{n}(x)\right|+|x|\left|\nabla \omega_{n}(x)\right| \leq C|x|^{\beta}, \quad x \in \Omega
$$

with $0<\beta<1$.

Boundary determination

- Use singular solutions: let ν be an arbitrary outer pointing nontangential vector of Ω at x_{0}, and $z_{\sigma}=x_{0}+\sigma \nu$ for some $\sigma>0$. Then we have solution $u(x)$ to $\nabla \cdot\left(\gamma_{0} \nabla u\right)=0$ with singularity at z_{σ} :

$$
u(x)=\log \left|x-z_{\sigma}\right|+w\left(x-z_{\sigma}\right)
$$

where ω satisfies

$$
\left|\omega_{n}(x)\right|+|x|\left|\nabla \omega_{n}(x)\right| \leq C|x|^{\beta}, \quad x \in \Omega
$$

with $0<\beta<1$.

- e.g. $m=1$,

$$
\int_{\Omega} T^{0}(x) \nabla u_{1} \cdot \nabla u_{2} d x=0
$$

let $u_{1}=u_{2}=u \Longrightarrow \mathrm{~T}^{0}\left(x_{0}\right)=0$ for $x_{0} \in \partial \Omega$.

Boundary determination

- Use singular solutions: let ν be an arbitrary outer pointing nontangential vector of Ω at x_{0}, and $z_{\sigma}=x_{0}+\sigma \nu$ for some $\sigma>0$.
Then we have solution $u(x)$ to $\nabla \cdot\left(\gamma_{0} \nabla u\right)=0$ with singularity at z_{σ} :

$$
u(x)=\log \left|x-z_{\sigma}\right|+w\left(x-z_{\sigma}\right)
$$

where ω satisfies

$$
\left|\omega_{n}(x)\right|+|x|\left|\nabla \omega_{n}(x)\right| \leq C|x|^{\beta}, \quad x \in \Omega
$$

with $0<\beta<1$.

- e.g. $m=1$,

$$
\int_{\Omega} T^{0}(x) \nabla u_{1} \cdot \nabla u_{2} d x=0
$$

$$
\text { let } u_{1}=u_{2}=u \Longrightarrow \mathrm{~T}^{0}\left(x_{0}\right)=0 \text { for } x_{0} \in \partial \Omega
$$

- Then let $u_{1}=u_{2}=u_{3}=u \Longrightarrow T^{1}\left(x_{0}\right) \partial_{1} u\left(x_{0}\right)+T^{2}\left(x_{0}\right) \partial_{2} u\left(x_{0}\right)=0$ for $x_{0} \in \partial \Omega$.

Bukhgeim's CGO Solutions

Bukhgeim constructed CGO solutions to the equation $(\Delta+q) u=0$ in dimension 2, by considering the system

$$
(D+Q) \mathbf{u}=0
$$

where

$$
D=\left[\begin{array}{cc}
2 \bar{\partial} & 0 \\
0 & 2 \partial
\end{array}\right], \quad Q=\left[\begin{array}{cc}
0 & -1 \\
q & 0
\end{array}\right], \quad \mathbf{u}=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

Bukhgeim's CGO Solutions

Bukhgeim constructed CGO solutions to the equation $(\Delta+q) u=0$ in dimension 2, by considering the system

$$
(D+Q) \mathbf{u}=0
$$

where

$$
D=\left[\begin{array}{cc}
2 \bar{\partial} & 0 \\
0 & 2 \partial
\end{array}\right], \quad Q=\left[\begin{array}{cc}
0 & -1 \\
q & 0
\end{array}\right], \quad \mathbf{u}=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

Choose a holomorphic function ψ and let

$$
\Phi=\left[\begin{array}{cc}
\psi & 0 \\
0 & \bar{\psi}
\end{array}\right], \quad \varphi(x)=2 \operatorname{lm} \psi
$$

we seek solutions of the form

$$
\mathbf{u}=e^{\Phi / h}(v+w)
$$

Bukhgeim's CGO Solutions

In the algebraic computations, we would encounter the Cauchy operator $\bar{\partial}^{-1}$ defined by

$$
\left(\bar{\partial}^{-1} u\right)(z)=\frac{1}{\pi} \int_{\Omega} \frac{u(w)}{z-w} \mathrm{~d} w, \quad \mathrm{~d} w=\mathrm{d} w_{1} \mathrm{~d} w_{2}
$$

which satisfies $\bar{\partial}^{-1} \bar{\partial}=i d$; similarly ∂^{-1} satisfying $\partial^{-1} \partial=i d$.

Bukhgeim's CGO Solutions

In the algebraic computations, we would encounter the Cauchy operator $\bar{\partial}^{-1}$ defined by

$$
\left(\bar{\partial}^{-1} u\right)(z)=\frac{1}{\pi} \int_{\Omega} \frac{u(w)}{z-w} \mathrm{~d} w, \quad \mathrm{~d} w=\mathrm{d} w_{1} \mathrm{~d} w_{2}
$$

which satisfies $\bar{\partial}^{-1} \bar{\partial}=i d$; similarly ∂^{-1} satisfying $\partial^{-1} \partial=i d$.
For convenience, we denote

$$
\bar{\partial}_{\varphi}^{-1} f:=\bar{\partial}^{-1} e^{-i \varphi / h} f, \quad \partial_{\varphi}^{-1} f:=\partial^{-1} e^{i \varphi / h} f
$$

Bukhgeim's CGO Solutions

In the algebraic computations, we would encounter the Cauchy operator $\bar{\partial}^{-1}$ defined by

$$
\left(\bar{\partial}^{-1} u\right)(z)=\frac{1}{\pi} \int_{\Omega} \frac{u(w)}{z-w} \mathrm{~d} w, \quad \mathrm{~d} w=\mathrm{d} w_{1} \mathrm{~d} w_{2}
$$

which satisfies $\bar{\partial}^{-1} \bar{\partial}=i d$; similarly ∂^{-1} satisfying $\partial^{-1} \partial=i d$.
For convenience, we denote

$$
\bar{\partial}_{\varphi}^{-1} f:=\bar{\partial}^{-1} e^{-i \varphi / h} f, \quad \partial_{\varphi}^{-1} f:=\partial^{-1} e^{i \varphi / h} f
$$

Buhkhgeim found solutions to the equation $(\Delta+q) u=0$

$$
\begin{aligned}
u & =e^{\psi / h}\left(v+r_{h}\right) \\
r_{h} & =(I-S)^{-1} S v=\sum_{n=1}^{\infty} S^{n} v
\end{aligned}
$$

for small $h>0$, where v is holomorphic, $S u=-\frac{1}{4} \bar{\partial}_{\varphi}^{-1}\left(\partial_{\varphi}^{-1}(q u)\right)$.

Bukhgeim's CGO solutions

Symmetrically, we also have solutions of the form

$$
\begin{aligned}
u^{t} & =e^{\bar{\psi} / h}\left(\bar{v}+\tilde{r}_{h}\right), \\
\tilde{r}_{h} & =\sum_{n=1}^{\infty}\left(S^{t}\right)^{n} \bar{v}
\end{aligned}
$$

where $S^{t} u=-\frac{1}{4} \partial_{\varphi}^{-1}\left(\bar{\partial}_{\varphi}^{-1}(q u)\right)$.

Bukhgeim's CGO solutions

Symmetrically, we also have solutions of the form

$$
\begin{aligned}
u^{t} & =e^{\bar{\psi} / h}\left(\bar{v}+\tilde{r}_{h}\right), \\
\tilde{r}_{h} & =\sum_{n=1}^{\infty}\left(S^{t}\right)^{n} \bar{v}
\end{aligned}
$$

where $S^{t} u=-\frac{1}{4} \partial_{\varphi}^{-1}\left(\bar{\partial}_{\varphi}^{-1}(q u)\right)$.
Using classical estimates on $\bar{\partial}^{-1}$ and ∂^{-1}, Bukhgeim showed for any $u \in L^{2}(\Omega)$,

$$
\|S u\|_{L^{2}} \leq c h^{1 / 3}\|u\|_{L^{2}}
$$

which ensures the remainder r_{h} is well defined.

Bukhgeim's CGO solutions

Symmetrically, we also have solutions of the form

$$
\begin{aligned}
u^{t} & =e^{\bar{\psi} / h}\left(\bar{v}+\tilde{r}_{h}\right), \\
\tilde{r}_{h} & =\sum_{n=1}^{\infty}\left(S^{t}\right)^{n} \bar{v}
\end{aligned}
$$

where $S^{t} u=-\frac{1}{4} \partial_{\varphi}^{-1}\left(\bar{\partial}_{\varphi}^{-1}(q u)\right)$.
Using classical estimates on $\bar{\partial}^{-1}$ and ∂^{-1}, Bukhgeim showed for any $u \in L^{2}(\Omega)$,

$$
\|S u\|_{L^{2}} \leq c h^{1 / 3}\|u\|_{L^{2}}
$$

which ensures the remainder r_{h} is well defined.
Later, Guillarmou and Tzou showed that for any $u \in W^{1, p}(\Omega)$, there is some $\epsilon>0$ such that

$$
\left\|\bar{\partial}_{\varphi}^{-1} u\right\|_{L^{p}} \leq C h^{\frac{1}{2}+\epsilon}\|u\|_{W^{1, p}}
$$

which may improve the estimates for the remainder r_{h}.

Bukhgeim's solutions solving the linear problem

 Using these solutions, Bukhgeim proved for linear potentialsTheorem
If $q_{j} \in L^{\infty}(\Omega)$ and $C_{q_{1}}=C_{q_{2}}$, then $q_{1}=q_{2}$.

Bukhgeim's solutions solving the linear problem Using these solutions, Bukhgeim proved for linear potentials
Theorem
If $q_{j} \in L^{\infty}(\Omega)$ and $C_{q_{1}}=C_{q_{2}}$, then $q_{1}=q_{2}$.
The proof used the following key lemma:
Lemma
Products of the form $u_{i} u_{j}^{t}$ are dense in L^{2}.

Bukhgeim's solutions solving the linear problem Using these solutions, Bukhgeim proved for linear potentials

Theorem

$$
\text { If } q_{j} \in L^{\infty}(\Omega) \text { and } C_{q_{1}}=C_{q_{2}}, \text { then } q_{1}=q_{2}
$$

The proof used the following key lemma:

Lemma

Products of the form $u_{i} u_{j}^{t}$ are dense in L^{2}.
To prove this, let

$$
\begin{aligned}
u_{1} & =e^{z^{2} / h}\left(1+r_{h}\right) \\
u_{2}^{t} & =e^{-\bar{z}^{2} / h}\left(1+\tilde{r}_{h}\right)
\end{aligned}
$$

so that for any $f \in L^{2}$,

$$
\int f(z) u_{1} u_{2}^{t}=\int e^{\left(z^{2}-\bar{z}^{2}\right) / h} f(z)\left(1+r_{h}+\tilde{r}_{h}+r_{h} \tilde{r}_{h}\right)=0
$$

would imply $f \equiv 0$ by the stationary phase method and remainder estimate.

Stationary phase method

We consider the oscillatory integral

$$
I(h):=\int_{U} e^{\frac{i \varphi(x)}{h}} a(x) d x
$$

- $U \subset \mathbb{R}^{n}$ is an open set
- $\varphi \in C^{\infty}(U ; \mathbb{R})$, called "phase function"
- $a \in C_{c}^{\infty}(U)$, called "amplitude"

Stationary phase method

We consider the oscillatory integral

$$
I(h):=\int_{U} e^{\frac{i \varphi(x)}{h}} a(x) d x
$$

- $U \subset \mathbb{R}^{n}$ is an open set
- $\varphi \in C^{\infty}(U ; \mathbb{R})$, called "phase function"
- $a \in C_{c}^{\infty}(U)$, called "amplitude"
- If supp a has no critical points of φ, by repeatedly integrating parts we have $I(h)=O\left(h^{N}\right), \forall N$.

Stationary phase method

- If x_{0} is a nondegenerate critical point of φ, then $d^{2} \varphi\left(x_{0}\right)$ has k positive eigenvalues and $n-k$ negative eigenvalues for some k. We define

$$
\operatorname{sgn} d^{2} \varphi\left(y_{0}\right):=k-(n-k)
$$

Stationary phase method

- If x_{0} is a nondegenerate critical point of φ, then $d^{2} \varphi\left(x_{0}\right)$ has k positive eigenvalues and $n-k$ negative eigenvalues for some k. We define

$$
\operatorname{sgn} d^{2} \varphi\left(y_{0}\right):=k-(n-k)
$$

Theorem

Let $\varphi \in C^{\infty}(U ; \mathbb{R})$ have the non-degenerate critical point $x_{0} \in X$ and assume that $\varphi^{\prime}(x) \neq 0$ for $x \neq x_{0}$. Then there are differential operators $A_{2 \nu}(D)$ of order $\leq 2 \nu$ such that for every compact $K \subset X$ and every $N \in \mathbb{N}$, there is a constant $C=C_{K, N}$ such that for every $u \in C^{\infty}(X) \cap \mathcal{E}^{\prime}(K)$

$$
\begin{gathered}
\left|\int e^{\frac{i \varphi(x)}{h}} u(x) d x-\left(\sum_{0}^{N-1}\left(A_{2 \nu}\left(D_{x}\right) u\right)\left(x_{0}\right) h^{\nu+\frac{n}{2}}\right) e^{\frac{i \varphi\left(x_{0}\right)}{h}}\right| \\
\leq C h^{N+\frac{n}{2}} \sum_{|x| \leq 2 N+n+1}\|u\|_{c^{2 N+n+1}} \\
\text { Moreover } A_{0}=\frac{(2 \pi)^{\frac{n}{2}} \cdot e^{i \frac{\pi}{4} \operatorname{sgn} \varphi^{\prime \prime}\left(x_{0}\right)}}{\left|\operatorname{det} \varphi^{\prime \prime}\left(x_{0}\right)\right|^{\frac{1}{2}}} .
\end{gathered}
$$

Key element of the proof

Lemma (Morse lemma)

Let $\varphi \in C^{\infty}(U ; \mathbb{R})$ and let $x_{0} \in U$ be a non-degenerate critical point. Then there are neighborhoods U of $0 \in \mathbb{R}^{n}$ and V of x_{0} and a C^{∞} diffeomorphism $\mathcal{H}: V \rightarrow U$ such that

$$
\varphi \circ \mathcal{H}^{-1}(x)=\varphi\left(x_{0}\right)+\frac{1}{2}\left(x_{1}^{2}+\ldots+x_{r}^{2}-x_{r+1}^{2}-\ldots-x_{n}^{2}\right) .
$$

Here $(r, n-r)$ is the signature of $\varphi^{\prime \prime}\left(x_{0}\right)$ (so that $r, n-r$ are respectively the number of positive and negative eigenvalues).

Key element of the proof

Lemma (Morse lemma)

Let $\varphi \in C^{\infty}(U ; \mathbb{R})$ and let $x_{0} \in U$ be a non-degenerate critical point. Then there are neighborhoods U of $0 \in \mathbb{R}^{n}$ and V of x_{0} and a C^{∞} diffeomorphism $\mathcal{H}: V \rightarrow U$ such that

$$
\varphi \circ \mathcal{H}^{-1}(x)=\varphi\left(x_{0}\right)+\frac{1}{2}\left(x_{1}^{2}+\ldots+x_{r}^{2}-x_{r+1}^{2}-\ldots-x_{n}^{2}\right) .
$$

Here $(r, n-r)$ is the signature of $\varphi^{\prime \prime}\left(x_{0}\right)$ (so that $r, n-r$ are respectively the number of positive and negative eigenvalues).
-Use the Morse lemma above to reduce the problem to the quadratic stationary phase case:

$$
I(h)=\int_{\mathbb{R}^{n}} e^{\frac{i}{2 h}\langle Q x, x\rangle} a(x) d x
$$

- Q is an invertible symmetric Heal $n \times n$ matrix, $a \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$.

Key element of the proof

Lemma (Morse lemma)

Let $\varphi \in C^{\infty}(U ; \mathbb{R})$ and let $x_{0} \in U$ be a non-degenerate critical point. Then there are neighborhoods U of $0 \in \mathbb{R}^{n}$ and V of x_{0} and a C^{∞} diffeomorphism $\mathcal{H}: V \rightarrow U$ such that

$$
\varphi \circ \mathcal{H}^{-1}(x)=\varphi\left(x_{0}\right)+\frac{1}{2}\left(x_{1}^{2}+\ldots+x_{r}^{2}-x_{r+1}^{2}-\ldots-x_{n}^{2}\right) .
$$

Here $(r, n-r)$ is the signature of $\varphi^{\prime \prime}\left(x_{0}\right)$ (so that $r, n-r$ are respectively the number of positive and negative eigenvalues).
-Use the Morse lemma above to reduce the problem to the quadratic stationary phase case:

$$
I(h)=\int_{\mathbb{R}^{n}} e^{\frac{i}{2 h}\langle Q x, x\rangle} a(x) d x
$$

- Q is an invertible symmetric Heal $n \times n$ matrix, $a \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$.
-Note: $\varphi(x)=\frac{1}{2}\langle Q x, x\rangle$ is a Morese function, the only critical part is $x=0$, and

$$
d_{\varphi}^{2}(0)=Q
$$

Key element of the proof

Theorem (Quadratic stationary phase)

$$
\int e^{\frac{i\langle x, Q \times x)}{h} / 2} u(x) d x=\sum_{k=0}^{N-1} \frac{(2 \pi)^{\frac{n}{2}} e^{i \frac{\pi}{4} \operatorname{sgn} Q} h^{k+\frac{n}{2}}}{k!|\operatorname{det} Q|^{\frac{1}{2}}}\left(\frac{1}{2 i}\left\langle D_{x}, Q^{-1} D_{x}\right\rangle\right)^{k} u(0)+S_{N}(u, \lambda),
$$

where

$$
\left|S_{N}(u, h)\right| \leq C_{Q . \varepsilon}(N!)^{-1} h^{N+\frac{n}{2}}\left\|\left(\frac{1}{2}\left\langle D, Q^{-1} D\right\rangle\right)^{N} u\right\|_{H^{\frac{n}{2}+\epsilon}\left(\mathbb{R}^{n}\right)}
$$

Key element of the proof

Theorem (Quadratic stationary phase)

$$
\int e^{\frac{i\langle x, Q \times x)}{h} / 2} u(x) d x=\sum_{k=0}^{N-1} \frac{(2 \pi)^{\frac{n}{2}} e^{i \frac{\pi}{4} \operatorname{sgn} Q} h^{k+\frac{n}{2}}}{k!|\operatorname{det} Q|^{\frac{1}{2}}}\left(\frac{1}{2 i}\left\langle D_{x}, Q^{-1} D_{x}\right\rangle\right)^{k} u(0)+S_{N}(u, \lambda),
$$

where

$$
\left|S_{N}(u, h)\right| \leq C_{Q \cdot \varepsilon}(N!)^{-1} h^{N+\frac{n}{2}}\left\|\left(\frac{1}{2}\left\langle D, Q^{-1} D\right\rangle\right)^{N} u\right\|_{H^{\frac{n}{2}+\epsilon}\left(\mathbf{R}^{n}\right)}
$$

-By Fourier transform,

$$
\int e^{i\langle x, Q x\rangle / 2 h} u(x) d x=(2 \pi)^{-\frac{n}{2}} h^{\frac{n}{2}}|\operatorname{det} Q|^{-\frac{1}{2}} e^{i \frac{\pi}{4} \operatorname{sgn} Q} \int e^{-i h\left(\xi, Q^{-1} \xi\right\rangle / 2} \hat{u}(\xi) d \xi
$$

Key element of the proof

Theorem (Quadratic stationary phase)

$$
\int e^{\frac{i\langle x, Q \times\rangle}{h} / 2} u(x) d x=\sum_{k=0}^{N-1} \frac{(2 \pi)^{\frac{n}{2}} e^{i \frac{\pi}{4} \operatorname{sgn} Q} h^{k+\frac{n}{2}}}{k!|\operatorname{det} Q|^{\frac{1}{2}}}\left(\frac{1}{2 i}\left\langle D_{x}, Q^{-1} D_{x}\right\rangle\right)^{k} u(0)+S_{N}(u, \lambda)
$$

where

$$
\left|S_{N}(u, h)\right| \leq C_{Q \cdot \varepsilon}(N!)^{-1} h^{N+\frac{n}{2}}\left\|\left(\frac{1}{2}\left\langle D, Q^{-1} D\right\rangle\right)^{N} u\right\|_{H^{\frac{n}{2}+\epsilon}\left(\mathbf{R}^{n}\right)}
$$

-By Fourier transform,
$\int e^{i\langle x, Q x\rangle / 2 h} u(x) d x=(2 \pi)^{-\frac{n}{2}} h^{\frac{n}{2}}|\operatorname{det} Q|^{-\frac{1}{2}} e^{i \frac{\pi}{4} \operatorname{sgn} Q} \int e^{-i h\left(\xi, Q^{-1} \xi\right\rangle / 2} \hat{u}(\xi) d \xi$.
-Use the Taylor expansion

$$
e^{\frac{h}{2 i}\left\langle Q^{-1} \xi, \xi\right\rangle} \underset{h \rightarrow 0}{\sim} \sum_{j=0}^{\infty} \frac{1}{j!}\left(\frac{h}{2 i}\left\langle Q^{-1} \xi, \xi\right\rangle\right)^{j}
$$

Key element of the proof

Theorem (Quadratic stationary phase)

$$
\int e^{\frac{i(x, Q \times\rangle)}{h} / 2} u(x) d x=\sum_{k=0}^{N-1} \frac{(2 \pi)^{\frac{n}{2}} e^{i \frac{\pi}{4} \operatorname{sgn} Q} h^{k+\frac{n}{2}}}{k!|\operatorname{det} Q|^{\frac{1}{2}}}\left(\frac{1}{2 i}\left\langle D_{x}, Q^{-1} D_{x}\right\rangle\right)^{k} u(0)+S_{N}(u, \lambda)
$$

where

$$
\left|S_{N}(u, h)\right| \leq C_{Q \cdot \varepsilon}(N!)^{-1} h^{N+\frac{n}{2}}\left\|\left(\frac{1}{2}\left\langle D, Q^{-1} D\right\rangle\right)^{N} u\right\|_{H^{\frac{n}{2}+\epsilon}\left(\mathrm{R}^{n}\right)}
$$

-By Fourier transform,
$\int e^{i\langle x, Q x\rangle / 2 h} u(x) d x=(2 \pi)^{-\frac{n}{2}} h^{\frac{n}{2}}|\operatorname{det} Q|^{-\frac{1}{2}} e^{i \frac{\pi}{4} \operatorname{sgn} Q} \int e^{-i h\left(\xi, Q^{-1} \xi\right\rangle / 2} \hat{u}(\xi) d \xi$.
-Use the Taylor expansion

$$
e^{\frac{h}{2 i}\left\langle Q^{-1} \xi, \xi\right\rangle} \underset{h \rightarrow 0}{\sim} \sum_{j=0}^{\infty} \frac{1}{j!}\left(\frac{h}{2 i}\left\langle Q^{-1} \xi, \xi\right\rangle\right)^{j}
$$

-Inverse Fourier transform

Example

Back to the integral identity in Bukhgeim's paper for linear problem:

$$
\int e^{\left(z^{2}-\bar{z}^{2}\right) / h} f(z)\left(1+r_{h}+\tilde{r}_{h}+r_{h} \tilde{r}_{h}\right)=0
$$

Example

Back to the integral identity in Bukhgeim's paper for linear problem:

$$
\int e^{\left(z^{2}-\bar{z}^{2}\right) / h} f(z)\left(1+r_{h}+\tilde{r}_{h}+r_{h} \tilde{r}_{h}\right)=0
$$

By stationary phase,

$$
\int e^{\left(z^{2}-\bar{z}^{2}\right) / h} f(z)=\operatorname{Chf}(0)+O\left(h^{2}\right)
$$

for some constant C.

Example

Back to the integral identity in Bukhgeim's paper for linear problem:

$$
\int e^{\left(z^{2}-\bar{z}^{2}\right) / h} f(z)\left(1+r_{h}+\tilde{r}_{h}+r_{h} \tilde{r}_{h}\right)=0
$$

By stationary phase,

$$
\int e^{\left(z^{2}-\bar{z}^{2}\right) / h} f(z)=\operatorname{Chf}(0)+O\left(h^{2}\right)
$$

for some constant C.
By remainder estimate,

$$
\begin{aligned}
& \int e^{\left(z^{2}-\bar{z}^{2}\right) / h} f(z) r_{h}=O\left(h^{1+\epsilon}\right) \\
& \int e^{\left(z^{2}-\bar{z}^{2}\right) / h} f(z) r_{h} \tilde{r}_{h}=O\left(h^{1+\epsilon}\right)
\end{aligned}
$$

Example

Back to the integral identity in Bukhgeim's paper for linear problem:

$$
\int e^{\left(z^{2}-\bar{z}^{2}\right) / h} f(z)\left(1+r_{h}+\tilde{r}_{h}+r_{h} \tilde{r}_{h}\right)=0
$$

By stationary phase,

$$
\int e^{\left(z^{2}-\bar{z}^{2}\right) / h} f(z)=\operatorname{Chf}(0)+O\left(h^{2}\right)
$$

for some constant C.
By remainder estimate,

$$
\begin{aligned}
& \int e^{\left(z^{2}-\bar{z}^{2}\right) / h} f(z) r_{h}=O\left(h^{1+\epsilon}\right) \\
& \int e^{\left(z^{2}-\bar{z}^{2}\right) / h} f(z) r_{h} \tilde{r}_{h}=O\left(h^{1+\epsilon}\right)
\end{aligned}
$$

Therefore, we can show $f(0)=0$, and similarly, we can show f vanishes at all the other points.

Quasilinear anisotropic problem in dimension 2: first try

It would be natural to first try solutions of the form

$$
\begin{aligned}
& u_{1}=\frac{1}{\sqrt{\gamma_{0}}} e^{z^{2} / h}\left(1+r_{h}\right) \\
& u_{2}^{t}=\frac{1}{\sqrt{\gamma_{0}}} e^{-\bar{z}^{2} / h}\left(1+\tilde{r}_{h}\right)
\end{aligned}
$$

for the quasilinear problem. Recall the integral identity we have in this case:

$$
\begin{array}{r}
\sum_{\left(l_{1}, \ldots, l_{m+1}\right) \in \pi(m+1)} \sum_{j_{1}, \ldots, j_{m}=0}^{n} \int_{\Omega} T^{j_{1} \ldots j_{m}}(x)\left(u_{l_{1}}, \nabla u_{l_{1}}\right)_{j_{1}} \ldots\left(u_{l_{m}}, \nabla u_{l_{m}}\right)_{j_{m}} \\
\nabla u_{l_{m+1}} \cdot \nabla u_{m+2} d x=0
\end{array}
$$

Quasilinear anisotropic problem in dimension 2: first try

 It would be natural to first try solutions of the form$$
\begin{aligned}
& u_{1}=\frac{1}{\sqrt{\gamma_{0}}} e^{z^{2} / h}\left(1+r_{h}\right) \\
& u_{2}^{t}=\frac{1}{\sqrt{\gamma_{0}}} e^{-\bar{z}^{2} / h}\left(1+\tilde{r}_{h}\right)
\end{aligned}
$$

for the quasilinear problem. Recall the integral identity we have in this case:

$$
\begin{array}{r}
\sum_{\left(l_{1}, \ldots, l_{m+1}\right) \in \pi(m+1)} \sum_{j_{1}, \ldots, j_{m}=0}^{n} \int_{\Omega} T^{j_{1} \ldots j_{m}}(x)\left(u_{l_{1}}, \nabla u_{l_{1}}\right)_{j_{1}} \ldots\left(u_{l_{m}}, \nabla u_{l_{m}}\right)_{j_{m}} \\
\nabla u_{l_{m+1}} \cdot \nabla u_{m+2} d x=0
\end{array}
$$

Unfortunately, it turns out that the remainder estimate may not be good enough since we are taking derivatives of the solution. As an example case, we look at $m=2$, where the integral identity reads

$$
\sum_{\left(l_{1}, l_{2}, 3\right) \in \pi(3)} \sum_{j, k=0}^{2} \int_{\Omega} T^{j k}(x)\left(u_{1_{1}}, \nabla u_{1_{1}}\right)_{j}\left(u_{l_{2}}, \nabla u_{l_{2}}\right)_{k} \nabla u_{3} \cdot \nabla u_{4} d x=0
$$

Quasilinear anisotropic problem: first try

We mention here that by choosing $u_{1}=u_{2}=1$, and then $u_{1}=0$, we would get an integral identity that already appears in the previous case $m=1$. Therefore, assume $m=1$ case is solved, we have $T^{00}=T^{01}=T^{02}=0$, and obtain

$$
\sum_{\left(1_{1}, l_{2}, l_{3}\right) \in \pi(3)} \sum_{j, k=1}^{2} \int T^{j k}(x) \partial_{x_{j}} u_{l_{1}} \partial_{x_{k}} u_{l_{2}} \nabla u_{l_{3}} \cdot \nabla u_{4} d x=0
$$

Quasilinear anisotropic problem: first try

We mention here that by choosing $u_{1}=u_{2}=1$, and then $u_{1}=0$, we would get an integral identity that already appears in the previous case $m=1$. Therefore, assume $m=1$ case is solved, we have $T^{00}=T^{01}=T^{02}=0$, and obtain

$$
\sum_{\left(l_{1}, l_{2}, l_{3}\right) \in \pi(3)} \sum_{j, k=1}^{2} \int T^{j k}(x) \partial_{x_{j}} u_{l_{1}} \partial_{x_{k}} u_{l_{2}} \nabla u_{l_{3}} \cdot \nabla u_{4} d x=0
$$

Now let

$$
\begin{aligned}
& u_{1}=u_{2}=\frac{1}{\sqrt{\gamma_{0}}} e^{\frac{1}{2} z^{2} / h}\left(1+r_{h}\right) \\
& u_{3}=u_{4}=\frac{1}{\sqrt{\gamma_{0}}} e^{-\frac{1}{2} \bar{z}^{2} / h}\left(1+\tilde{r}_{h}\right)
\end{aligned}
$$

Quasilinear anisotropic problem: first try

We mention here that by choosing $u_{1}=u_{2}=1$, and then $u_{1}=0$, we would get an integral identity that already appears in the previous case $m=1$. Therefore, assume $m=1$ case is solved, we have $T^{00}=T^{01}=T^{02}=0$, and obtain

$$
\sum_{\left(1_{1}, 2, l_{3}\right) \in \pi(3)} \sum_{j, k=1}^{2} \int T^{j k}(x) \partial_{x_{j}} u_{l_{1}} \partial_{x_{k}} u_{2} \nabla u_{3} \cdot \nabla u_{4} d x=0
$$

Now let

$$
\begin{aligned}
& u_{1}=u_{2}=\frac{1}{\sqrt{\gamma_{0}}} e^{\frac{1}{2} z^{2} / h}\left(1+r_{h}\right) \\
& u_{3}=u_{4}=\frac{1}{\sqrt{\gamma_{0}}} e^{-\frac{1}{2} \bar{z}^{2} / h}\left(1+\tilde{r}_{h}\right)
\end{aligned}
$$

We focus first on the term in the expansion where the derivatives hit the phases:

$$
\int \frac{1}{h^{4} \gamma_{0}^{2}}\left(T^{11}+T^{22}\right) e^{\left(z^{2}-\bar{z}^{2}\right) / h^{2} z^{2}}{ }^{2}\left(1+r_{h}\right)\left(1+r_{h}\right)\left(1+\tilde{r}_{h}\right)\left(1+\tilde{r}_{h}\right)
$$

which by stationary phase would include the term $\frac{C}{h}\left(T^{11}+T^{22}\right)(0)$ for some constant C.

Quasilinear anisotropic problem: first try

However, if one of the derivative hits the $\frac{1}{\sqrt{\gamma_{0}}}$ instead of the phase, we get

$$
\int \frac{1}{h^{3} \gamma_{0}^{3 / 2}} \partial\left(\frac{1}{\sqrt{\gamma_{0}}}\right) T e^{\left(z^{2}-\bar{z}^{2}\right) / h} z \bar{z}^{2}\left(1+r_{h}\right)\left(1+r_{h}\right)\left(1+\tilde{r}_{h}\right)\left(1+\tilde{r}_{h}\right)
$$

which includes the term

$$
\int \frac{1}{h^{3} \gamma_{0}^{3 / 2}} \partial\left(\frac{1}{\sqrt{\gamma_{0}}}\right) T e^{\left(z^{2}-\bar{z}^{2}\right) / h} z \bar{z}^{2} r_{h}=O\left(h^{1+\epsilon-3}\right)=O\left(h^{-2+\epsilon}\right)
$$

Quasilinear anisotropic problem: first try

However, if one of the derivative hits the $\frac{1}{\sqrt{\gamma_{0}}}$ instead of the phase, we get

$$
\int \frac{1}{h^{3} \gamma_{0}^{3 / 2}} \partial\left(\frac{1}{\sqrt{\gamma_{0}}}\right) T e^{\left(z^{2}-\bar{z}^{2}\right) / h} z \bar{z}^{2}\left(1+r_{h}\right)\left(1+r_{h}\right)\left(1+\tilde{r}_{h}\right)\left(1+\tilde{r}_{h}\right)
$$

which includes the term

$$
\int \frac{1}{h^{3} \gamma_{0}^{3 / 2}} \partial\left(\frac{1}{\sqrt{\gamma_{0}}}\right) T e^{\left(z^{2}-\bar{z}^{2}\right) / h} z \bar{z}^{2} r_{h}=O\left(h^{1+\epsilon-3}\right)=O\left(h^{-2+\epsilon}\right)
$$

Therefore, we may not ensure that the above term involving the remainder is of smaller size compared to the principal term $\frac{C}{h}\left(T^{11}+T^{22}\right)(0)$.

Solution

To solve the above problem, we instead choose phase functions with no critical point. Consider without loss of generality

$$
\begin{aligned}
u & =\frac{1}{\sqrt{\gamma}} e^{\left(z+\frac{1}{2} z^{2}\right) / h}\left(1+r_{h}\right), \\
r_{h} & =\sum_{n=1}^{\infty} S^{n} 1
\end{aligned}
$$

Integrating by parts, we have

$$
\bar{\partial}^{-1} e^{\mathrm{i} \varphi / h} f=\frac{i h}{2}\left[e^{\mathrm{i} \varphi / h} \frac{f}{\bar{\partial} \varphi}+\frac{i h}{2} \bar{\partial}^{-1}\left(e^{\mathrm{i} \varphi / h} \bar{\partial}\left(\frac{f}{\bar{\partial} \varphi}\right)\right)\right],
$$

which holds for any $f \in C_{0}^{1}(\bar{\Omega})$. Thus, for φ having no critical point in Ω.

Solution

To solve the above problem, we instead choose phase functions with no critical point. Consider without loss of generality

$$
\begin{aligned}
u & =\frac{1}{\sqrt{\gamma}} e^{\left(z+\frac{1}{2} z^{2}\right) / h}\left(1+r_{h}\right), \\
r_{h} & =\sum_{n=1}^{\infty} S^{n} 1
\end{aligned}
$$

Integrating by parts, we have

$$
\bar{\partial}^{-1} e^{\mathrm{i} \varphi / h} f=\frac{i h}{2}\left[e^{\mathrm{i} \varphi / h} \frac{f}{\bar{\partial} \varphi}+\frac{i h}{2} \bar{\partial}^{-1}\left(e^{\mathrm{i} \varphi / h} \bar{\partial}\left(\frac{f}{\bar{\partial} \varphi}\right)\right)\right],
$$

which holds for any $f \in C_{0}^{1}(\bar{\Omega})$. Thus, for φ having no critical point in Ω. Using Calderón-Zygmund estimate, we have

$$
\left\|\bar{\partial}^{-1} e^{\mathrm{i} \varphi / h} f\right\|_{L^{p}} \leq C h\|f\|_{W^{1, p}}
$$

for all $p \in(1, \infty)$.

Solution

To solve the above problem, we instead choose phase functions with no critical point. Consider without loss of generality

$$
\begin{aligned}
u & =\frac{1}{\sqrt{\gamma}} e^{\left(z+\frac{1}{2} z^{2}\right) / h}\left(1+r_{h}\right) \\
r_{h} & =\sum_{n=1}^{\infty} S^{n} 1
\end{aligned}
$$

Integrating by parts, we have

$$
\bar{\partial}^{-1} e^{\mathrm{i} \varphi / h} f=\frac{i h}{2}\left[e^{\mathrm{i} \varphi / h} \frac{f}{\bar{\partial} \varphi}+\frac{i h}{2} \bar{\partial}^{-1}\left(e^{\mathrm{i} \varphi / h} \bar{\partial}\left(\frac{f}{\bar{\partial} \varphi}\right)\right)\right],
$$

which holds for any $f \in C_{0}^{1}(\bar{\Omega})$. Thus, for φ having no critical point in Ω. Using Calderón-Zygmund estimate, we have

$$
\left\|\bar{\partial}^{-1} e^{\mathrm{i} \varphi / h} f\right\|_{L^{p}} \leq C h\|f\|_{W^{1, p}}
$$

for all $p \in(1, \infty)$. This leads to better estimate for remainders in the above solutions:

$$
\left\|r_{h}\right\|_{L^{2}},\left\|\partial r_{h}\right\|_{L^{2}},\left\|\bar{\partial} r_{h}\right\|_{L^{2}}=O(h)
$$

Solution

We mention that the idea of choosing phases without critical points has previously appeared in limiting Carleman weights. What is special in our case is that in dimension 2 , we may have the explicit form for the remainder r_{h} using Bukhgeim's construction.

Solution

We mention that the idea of choosing phases without critical points has previously appeared in limiting Carleman weights. What is special in our case is that in dimension 2 , we may have the explicit form for the remainder r_{h} using Bukhgeim's construction. Let us check how these solutions help solve the problematic case. Again, consider the case $m=2$, where we have the integral identity

$$
\sum_{\left(l_{1}, l_{2}, l_{3}\right) \in \pi(3)} \sum_{j, k=1}^{2} \int T^{j k}(x) \partial_{x_{j}} u_{l_{1}} \partial_{x_{k}} u_{l_{2}} \nabla u_{l_{3}} \cdot \nabla u_{4} d x=0
$$

Solution

We mention that the idea of choosing phases without critical points has previously appeared in limiting Carleman weights. What is special in our case is that in dimension 2 , we may have the explicit form for the remainder r_{h} using Bukhgeim's construction.

Let us check how these solutions help solve the problematic case. Again, consider the case $m=2$, where we have the integral identity

$$
\sum_{\left(l_{1}, l_{2}, l_{3}\right) \in \pi(3)} \sum_{j, k=1}^{2} \int T^{j k}(x) \partial_{x_{j}} u_{l_{1}} \partial_{x_{k}} u_{l_{2}} \nabla u_{l_{3}} \cdot \nabla u_{4} d x=0
$$

Let

$$
\begin{aligned}
& u_{1}=\frac{1}{\sqrt{\gamma_{0}}} e^{\left(z+\frac{1}{2} z^{2}\right) / h}\left(1+r_{1}\right), \\
& u_{2}=\frac{1}{\sqrt{\gamma_{0}}} e^{\left(-z+\frac{1}{2} z^{2}\right) / h}\left(1+r_{2}\right), \\
& u_{3}=\frac{1}{\sqrt{\gamma_{0}}} e^{\left(-\bar{z}-\frac{1}{2} \bar{z}^{2}\right) / h}\left(1+r_{3}\right) \\
& u_{4}=\frac{1}{\sqrt{\gamma_{0}}} e^{\left(\bar{z}-\frac{1}{2} \bar{z}^{2}\right) / h}\left(1+r_{4}\right)
\end{aligned}
$$

Solution

Now if the derivatives all hit the exponential component of the solutions, we will get
$\int \frac{1}{h^{4} \gamma_{0}^{2}}\left(T^{11}+T^{22}\right) e^{\left(z^{2}-\bar{z}^{2}\right) / h}(1+z)(-1+z)(1-\bar{z})(-1-\bar{z})\left(1+r_{1}\right)\left(1+r_{2}\right)\left(1+r_{3}\right)\left(1+r_{4}\right)$
which includes the term

$$
\int \frac{1}{h^{4} \gamma_{0}^{2}}\left(T^{11}+T^{22}\right) e^{\left(z^{2}-\bar{z}^{2}\right) / h}=\frac{C}{h^{3}}\left(T^{11}+T^{22}\right)(0)
$$

while by remainder estimates, we can check all the terms involving the remainder term are $O\left(\frac{1}{h^{2}}\right)$.

Solution

Now if the derivatives all hit the exponential component of the solutions, we will get
$\int \frac{1}{h^{4} \gamma_{0}^{2}}\left(T^{11}+T^{22}\right) e^{\left(z^{2}-\bar{z}^{2}\right) / h}(1+z)(-1+z)(1-\bar{z})(-1-\bar{z})\left(1+r_{1}\right)\left(1+r_{2}\right)\left(1+r_{3}\right)\left(1+r_{4}\right)$
which includes the term

$$
\int \frac{1}{h^{4} \gamma_{0}^{2}}\left(T^{11}+T^{22}\right) e^{\left(z^{2}-\bar{z}^{2}\right) / h}=\frac{C}{h^{3}}\left(T^{11}+T^{22}\right)(0)
$$

while by remainder estimates, we can check all the terms involving the remainder term are $O\left(\frac{1}{h^{2}}\right)$.
Therefore, we can show $\left(T^{11}+T^{22}\right)(0)=0$, and similarly we can prove $T^{11}+T^{22}$ vanishes at all the other points.
Similarly, by choosing other sets of solutions $u_{1}, u_{2}, u_{3}, u_{4}$ properly, we get a system of linear equatoins for T^{11}, T^{12}, T^{22}. In particular, for $m=2$, we obtain

$$
\begin{array}{r}
T^{11}+2 i T^{12}-T^{22}=0 \\
T^{11}+T^{22}=0 \\
T^{11}-2 i T^{12}-T^{22}=0
\end{array}
$$

Solution

Now if the derivatives all hit the exponential component of the solutions, we will get
$\int \frac{1}{h^{4} \gamma_{0}^{2}}\left(T^{11}+T^{22}\right) e^{\left(z^{2}-\bar{z}^{2}\right) / h}(1+z)(-1+z)(1-\bar{z})(-1-\bar{z})\left(1+r_{1}\right)\left(1+r_{2}\right)\left(1+r_{3}\right)\left(1+r_{4}\right)$
which includes the term

$$
\int \frac{1}{h^{4} \gamma_{0}^{2}}\left(T^{11}+T^{22}\right) e^{\left(z^{2}-\bar{z}^{2}\right) / h}=\frac{C}{h^{3}}\left(T^{11}+T^{22}\right)(0)
$$

while by remainder estimates, we can check all the terms involving the remainder term are $O\left(\frac{1}{h^{2}}\right)$.
Therefore, we can show $\left(T^{11}+T^{22}\right)(0)=0$, and similarly we can prove $T^{11}+T^{22}$ vanishes at all the other points.
Similarly, by choosing other sets of solutions $u_{1}, u_{2}, u_{3}, u_{4}$ properly, we get a system of linear equatoins for T^{11}, T^{12}, T^{22}. In particular, for $m=2$, we obtain

$$
\begin{array}{r}
T^{11}+2 i T^{12}-T^{22}=0 \\
T^{11}+T^{22}=0 \\
T^{11}-2 i T^{12}-T^{22}=0
\end{array}
$$

which has the unique solution $T^{11}=T^{12}=T^{22}=0$. The proof for other m is similar.

References

[1] C. Cârstea et al. "The Caldeón inverse problem for isotropic quasilinear conductivities". Advances in Mathematics 391 (1 2021).
[2] Z. Sun. "On a quasilinear inverse boundary value problem". Mathematische Zeitschrift 2.221 (1996), pp. 293-305.
[3] Z. Sun and G. Uhlmann. "Inverse problems in quasilinear anisotropic media". Am.J.Math. 119 (1997), pp. 771-797.
[4] J. Sylvester and G. Uhlmann. "A global uniqueness theorem for an inverse boundary value problem". Ann. of Math. 125.1 (1987), pp. 153-169.

Thank you!

