An introduction to the fractional Calderón problem

Li Li

University of California, Irvine

Clemson, SC Jun 3, 2024

Notations

- $n \ge 2$: space dimension
- ullet 0 < s < 1 : fractional power
- Ω : a bounded domain with smooth boundary $\partial\Omega$
- $\Omega_e := \mathbb{R}^n \setminus \bar{\Omega}$
- $\langle \cdot, \cdot \rangle$: standard L^2 -distributional pairing
- $H^s(U)$: the Sobolev space $W^{s,2}(U)$

Definition of $(-\Delta)^s$ (0 < s < 1) in \mathbb{R}^n :

(Fourier transform definition)

$$(-\Delta)^{s}u(x):=\mathcal{F}^{-1}(|\xi|^{2s}\mathcal{F}u(\xi))(x)$$

where \mathcal{F} denotes the Fourier transform.

(Principal value definition)

$$(-\Delta)^{s}u(x):=c_{n,s}\lim_{\epsilon\to 0^{+}}\int_{\mathbb{R}^{n}\setminus B_{\epsilon}(x)}\frac{u(x)-u(y)}{|x-y|^{n+2s}}\,dy$$

where $B_{\epsilon}(x)$ denotes the open ball centered at x with radius ϵ .

(Caffarelli-Silvestre extension definition)

$$((-\Delta)^{s}f)(x) := c_{s} \lim_{y \to 0^{+}} y^{1-2s} \partial_{y} u(x,y)$$

where *u* is the solution of the extension problem

$$\begin{cases} \operatorname{div}(y^{1-2s}\nabla u) = 0 & \text{in } \mathbb{R}^{n+1}_+ \\ u(x,0) = f(x) & \text{on } \mathbb{R}^n \times \{0\}. \end{cases}$$

• Unique continuation property of $(-\Delta)^s$ has been proven based on CS definition and Carleman estimates (Rüland, 15).

(Ghosh-Salo-Uhlmann, 16)

Let 0 < s < 1 and $u \in H^s(\mathbb{R}^n)$. Let W be nonempty and open. If

$$(-\Delta)^s u = u = 0$$
 in W ,

then u = 0 in \mathbb{R}^n .

Formulation of the fractional Calderón problem:

We consider the exterior Dirichlet problem

$$((-\Delta)^s + q)u = 0 \text{ in } \Omega, \qquad u|_{\Omega_e} = g$$

where $\Omega_e := \mathbb{R}^n \setminus \bar{\Omega}$ and define the Dirichlet-to-Neumann map

$$\Lambda_q: g \to (-\Delta)^s u|_{\Omega_e}.$$

• Inverse problem: Can we determine q from Λ_q ?

Fundamental uniqueness theorem:

(Ghosh-Salo-Uhlmann, 16)

Suppose $n \ge 2$. Let $0 \le q_1, q_2 \in L^{\infty}(\Omega)$ and let $W_1, W_2 \subset \Omega_e$ be nonempty and open. If

$$\Lambda_{q_1}g|_{W_2}=\Lambda_{q_2}g|_{W_2}, \qquad g\in C_c^\infty(W_1),$$

then $q_1 = q_2$ in Ω .

Main ingredients of the proof:

- Integral identity for Dirichlet-to-Neumann maps
- Runge approximation property

The following RAP was proved based on UCP.

Runge approximation property (Ghosh-Salo-Uhlmann, 16)

Let $0 \leq q \in L^{\infty}(\Omega)$ and let $W \subset \Omega_e$ be open. Then

$$\mathcal{S}:=\{u_g|_{\Omega}:g\in C_c^{\infty}(W)\}$$

is dense in $L^2(\Omega)$. Here u_g is the solution of the exterior problem corresponding to the exterior data g.

Proof of the fundamental theorem:

The assumption on DN maps can be interpreted as

$$\int_{\Omega}(q_1-q_2)u_1u_2=0$$

for any $g_j \in C_c^\infty(W_j)$ (j=1,2) where u_j is the solution of

$$((-\Delta)^s + q_i)u = 0 \text{ in } \Omega, \qquad u|_{\Omega_e} = g_i.$$

- Given $f \in L^2(\Omega)$, by RAP we can choose $g_j \in C_c^{\infty}(W_j)$ (j = 1, 2) s.t. $u_1 \to f$, $u_2 \to 1$ in $L^2(\Omega)$.
- Conclude that

$$\int_{\Omega}(q_1-q_2)f=0,$$

 $q_1 = q_2$ since f is arbitrary.

Variants of the fractional Calderón problem: Inverse problems for

- Variable coefficients fractional elliptic operators (Ghosh-Lin-Xiao, 17)
- Local perturbation of fractional Laplacian (Cekić-Lin-Rüland, 18; Covi-Mönkkönen-Railo-Uhlmann, 20)
- Nonlocal perturbation of fractional Laplacian (Bhattacharyya-Ghosh-Uhlmann, 20; Covi, 21)
- Coupled space-time fractional parabolic operator (Lai-Lin-Rüland, 20)
- Fractional magnetic operators (Covi, 19; L, 20; Lai-Zhou, 21)

Inverse problems for

- Fractional elasticity (L, 21; Covi-de Hoop-Salo, 22)
- Fractional porous medium equation (L, 21)
- Operators involving fractional gradients (Covi, 18; Lai-Ohm, 20; Railo-Zimmermann, 22)
- Fractional operators on closed manifolds (Feizmohammadi-Ghosh-Krupchyk-Uhlmann, 21; Quan-Uhlmann, 22; Chien, 22)