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@ n > 2: space dimension

@ 0 < s < 1 : fractional power

@ Q : a bounded domain with smooth boundary 9Q
@ Qe :=R"\Q

@ (-,-) : standard L2-distributional pairing

@ HS(U) : the Sobolev space WS2(U)
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Fractional Calderén Problem

Definition of (-A)* (0 < s < 1)inR™
@ (Fourier transform definition)

(—2)°u(x) == F (|3 Fu(€))(x)

where F denotes the Fourier transform.
@ (Principal value definition)

(—A)°u(x) :=cps lim dy

e—0t

/ u(x) — u(y)
R

M Be(x) |X - y’n+23

where B,(x) denotes the open ball centered at x with radius e.
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Fractional Calderén Problem

@ (Caffarelli-Silvestre extension definition)
(—D)*F)(x) == cs lim y'~2%d,u(x,y)
y—0+
where u is the solution of the extension problem

div(y'"2Vu) =0 in R
u(x,0) = f(x) onR"x {0}.

@ Unique continuation property of (—A)® has been proven based on
CS definition and Carleman estimates (Riland, 15).

(Ghosh—Salo—Uhlmann, 16)
Let 0 < s <1and u e H5(R"). Let W be nonempty and open. If

(—A)$Pu=u=0 inW,

then u =0 in R".
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Fractional Calderén Problem

Formulation of the fractional Calder6n problem:
@ We consider the exterior Dirichlet problem

(A +qu=0inQ, U, =g
where Q, := R\ Q and define the Dirichlet-to-Neumann map
Ng: g — (—A)°ulq,.

@ Inverse problem: Can we determine q from A4?
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Fractional Calderén Problem

Fundamental uniqueness theorem:

(Ghosh—Salo—Uhlmann, 16)

Suppose n > 2. Let 0 < gy, @z € L>*(2) and let Wy, W> C Q¢ be
nonempty and open. If

/\Q1g’W2:AQQg|W27 QECSO(W1)7

then gy = g0 in Q.

A

Main ingredients of the proof:
@ Integral identity for Dirichlet-to-Neumann maps
@ Runge approximation property
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Fractional Calderén Problem

The following RAP was proved based on UCP.

Runge approximation property (Ghosh—Salo—Uhlmann, 16)
Let 0 < g e L>*(Q) and let W C Q. be open. Then

S:={ugla: g e Co(W)}

is dense in L2(Q). Here uy is the solution of the exterior problem
corresponding to the exterior data g.
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Fractional Calderén Problem

Proof of the fundamental theorem:
@ The assumption on DN maps can be interpreted as

/(Q1 —Q)uip =0

Q

for any g € C°(W;) (j = 1,2) where y; is the solution of
(-A)°+qg)u=0inQ, ula, = g;-

@ Given f € L2(Q), by RAP we can choose g; € C(W)) (j = 1,2)
s.t. Uy — f,up — 1in L2(Q).

@ Conclude that

/(Ch —q)f =0,
Q
g1 = @ since f is arbitrary.
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Fractional Calderén Problem

Variants of the fractional Calderdn problem: Inverse problems for

@ Variable coefficients fractional elliptic operators
(Ghosh-Lin-Xiao, 17)

@ Local perturbation of fractional Laplacian (Ceki¢-Lin-Raland, 18;
Covi-Mdnkkénen-Railo-Uhlmann, 20)

@ Nonlocal perturbation of fractional Laplacian
(Bhattacharyya-Ghosh-Uhlmann, 20; Covi, 21)

@ Coupled space-time fractional parabolic operator
(Lai-Lin-Rdland, 20)

@ Fractional magnetic operators (Covi, 19; L, 20; Lai-Zhou, 21)
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Fractional Calderén Problem

Inverse problems for
@ Fractional elasticity (L, 21; Covi-de Hoop-Salo, 22)

@ Fractional porous medium equation (L, 21)

@ Operators involving fractional gradients (Covi, 18; Lai-Ohm, 20;
Railo-Zimmermann, 22)

@ Fractional operators on closed manifolds
(Feizmohammadi-Ghosh-Krupchyk-Uhlmann, 21;
Quan-Uhlmann, 22; Chien, 22)
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