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Inverse Problems for Nonlinear Conductivity Equations

Sun, 1996 (linearization)
Sun–U, 1997: γ(x , u) (anisotropic, 2nd-order linearization)
Hervas–Sun, 2002: γ(x ,∇u),
Muñoz–Uhlmann, 2020, Shankar, 2019: γ(u,∇u).

Consider the boundary value problem{
∇ · (γ(x , u)∇u) = 0 in Ω,

u = f on ∂Ω.

We define the associated Dirichlet-to-Neumann map by

Λγ(f ) = (γ(x , u)∂νu)|∂Ω

where ν is the unit outer normal to ∂Ω.



Inverse Problems for Nonlinear Conductivity Equations

Theorem (Sun, 1996)
Let n ≥ 2. Assume γi ,∈ C 1,1(Ω̄ × [−T ,T ]) ∀T > 0, i = 1, 2, and
Λγ1 = Λγ2 . Then γ1(x , t) = γ2(x , t) on Ω̄× R.
The following linearization proposition is the key for the proof.

Proposition
Let γ(x , t) be as in the theorem. Let 1 < p < ∞, 0 < α < 1.
Denote γt(x) = γ(x , t).
Then for any f ∈ C 2,α(∂Ω), 0 < α < 1, t ∈ R

lim
s→0

∥∥∥∥1
s
Λγ(t + sf )− Λγt (f )

∥∥∥∥
H1/2(∂Ω)

= 0.



Non-linearity Helps!

Let us consider the Dirichlet problem for the following semilinear elliptic equation,{
−∆u + q(x)um = 0 in Ω,

u = f on ∂Ω,

with q ∈ Cα(Ω), 0 < α < 1, and m ≥ 2. Let Γ ⊂ ∂Ω be arbitrary open non-
empty. When f ∈ C 2,α(∂Ω) with ∥f ∥C2,α(∂Ω) sufficiently small, the problem has
a unique small solution u ∈ C 2,α(Ω). Define the partial Dirichlet–to–Neumann
map NΓ

q f = ∂νu|Γ, where supp (f ) ⊂ Γ.

Theorem (Krupchyk–U; Lassas–Liimatainen–Lin–Salo, 2019)
Let NΓ

q1 f = NΓ
q2 f for all f ∈ C 2,α(∂Ω) small with supp (f ) ⊂ Γ. Then q1 = q2

in Ω.



Idea of the Proof

Assume that m = 2. A second order linearization of the partial Dirichlet–to–
Neumann map leads to the following integral identity,∫

Ω

(q1 − q2)v
(1)v (2)v (3)dx = 0

for any v (l) ∈ C∞(Ω) harmonic in Ω, such that supp (v (l)|∂Ω) ⊂ Γ, l = 1, 2, 3.

A result on the linearized partial data inverse problem by Dos Santos Ferreira–
Kenig–Sjöstrand–U, 2009: the set of products of two harmonic functions in
C∞(Ω) which vanish on ∂Ω\Γ is dense in L1(Ω). (the proof is highly non-trivial
and is based on the FBI transform approach to analytic microlocal analysis).

We conclude that
(q1 − q2)v

(3) = 0 in Ω.

Now taking v (3) ̸≡ 0 harmonic, and using that the set (v (3))−1(0) is of measure
zero, we get q1 = q2 in Ω.



The Calderón problem with partial data

In practice impedance tomography measurements cannot be taken on the entire
boundary due to limitations in resources or obstructions from natural obstacles.

This leads us to consider the Calderón problem with partial data.
Consider {

∇ · (γ∇u) = 0 in Ω,

u|∂Ω = f .

Let Γ1, Γ2 ⊂ ∂Ω be arbitrary open non-empty. The partial Dirichlet–to–Neumann
map,

ΛΓ1,Γ2
γ (f ) = (γ∂νu)|Γ2 , supp (f ) ⊂ Γ1.

 

Oi

The Calderón problem with partial data: Does ΛΓ1,Γ2
γ determine γ in Ω? Open

in general.



Known results in linear case:

▶ Bukhgeim–U, 2002:

Γ1 = ∂Ω, Γ2 = {x ∈ ∂Ω : ξ · ν(x) < ε}, ξ ∈ Sn−1, ε > 0.

Note: Γ2 is slightly more than a half of the boundary
▶ Kenig–Sjöstrand–U, 2007:

Γ2 = {x ∈ ∂Ω :
(x − x0)

|x − x0|
· ν(x) < ε}, x0 /∈ ch(Ω), ε > 0,

Γ1 = small neighborhood of complement of Γ2. 

Note: when Ω is strictly convex, Γ2 could be arbitrarily small



Partial data inverse problems for semilinear conductivities

Consider the Dirichlet problem for the following isotropic semilinear conductivity
equation, {

∇ · (γ(x , u)∇u) = 0 in Ω,

u = f on ∂Ω.
(1)

Assume that the function γ : Ω× C → C satisfies the following conditions,

(i) the map C ∋ τ 7→ γ(·, τ) is holomorphic with values in the Hölder space
C 1,α(Ω) with some 0 < α < 1,

(ii) γ(x , 0) = 1, for all x ∈ Ω.

There exist δ > 0 and C > 0 such that when f ∈ Bδ(∂Ω) := {f ∈ C 2,α(∂Ω) :
∥f ∥C2,α(∂Ω) < δ}, the problem (1) has a unique solution u = uf ∈ C 2,α(Ω)
satisfying ∥u∥C2,α(Ω) < Cδ.



Let Γ ⊂ ∂Ω be an arbitrary open non-empty subset of the boundary ∂Ω. We
define the partial Dirichlet–to–Neumann map

ΛΓ
γ(f ) = (γ(x , u)∂νu)|Γ,

where f ∈ Bδ(∂Ω) with supp (f ) ⊂ Γ.
 

Oi

Theorem (Kian–Krupchyk–U, 2023)
If ΛΓ

γ1 = ΛΓ
γ2 then γ1 = γ2 in Ω× C.

Remark To the best of our knowledge, these results are the first partial data
results for nonlinear conductivity equations.

Remark An analog of these partial data results is still not known in the case
of the linear conductivity equation in dimensions n ≥ 3. This is a major open
problem in the field! Non-linearity helps!



Idea of the proof

First it follows from (i) and (ii) that γ can be expanded into the following power
series,

γ(x , λ) = 1 +
∞∑
k=1

∂k
λγ(x , 0)

λk

k!
, ∂k

λγ(x , 0) ∈ C 1,α(Ω), λ ∈ C,

converging in the C 1,α(Ω) topology.
Using the mth order linearization, m ≥ 2, we reduce the proof of

∂m−1
λ γ1(x , 0) = ∂m−1

λ γ2(x , 0)

to the following density result:

Theorem (Kian–Krupchyk–U, 2023)
Let m = 2, 3, . . . , be fixed and let f ∈ L∞(Ω) be such that∫

Ω

f

( m∑
k=1

m∏
r=1,r ̸=k

ur∇uk

)
· ∇um+1dx = 0,

for all functions ul ∈ C∞(Ω) harmonic in Ω with supp (ul |∂Ω) ⊂ Γ, l =
1, . . . ,m + 1. Then f = 0 in Ω.

The proof uses Analytic Microlocal Analysis, FBI transform techniques.



Partial data for semilinear elliptic PDE

Consider next the following Dirichlet problem,{
−∆u + q(x)(∇u)2 = 0 in Ω,

u = f on ∂Ω.

Here q ∈ Cα(Ω) for some 0 < α < 1, (∇u)2 = ∇u · ∇u.

For any f ∈ C 2,α(∂Ω) small, there exists a unique small solution u ∈ C 2,α(Ω).
Define the partial Dirichlet–to–Neumann map,

ΛΓ1,Γ2
q (f ) = ∂νu|Γ2 , supp (f ) ⊂ Γ1.

 

Oi

Theorem (Krupchyk–U, 2020)
ΛΓ1,Γ2
q1 = ΛΓ1,Γ2

q2 =⇒ q1 = q2 in Ω.

Remark. Slightly more general nonlinearities can also be treated.



Idea of the proof

Performing a second order linearization, we get∫
Ω

(q1 − q2)(∇v (1) · ∇v (2))v (3)dx = 0,

for any v (l) ∈ C∞(Ω) harmonic in Ω, l = 1, 2, 3, such that
supp (v (l)|∂Ω) ⊂ Γ1, l = 1, 2, and supp (v (3)|∂Ω) ⊂ Γ2. Our inverse theorem
follows therefore from the following density result.

Theorem (Krupchyk–U, 2020)
Span{∇v (1) · ∇v (2) : v (l) ∈ C∞(Ω) harmonic, v (l)|∂Ω\Γ1 = 0, l = 1, 2} is dense
in L1(Ω).

The proof uses Analytic Microlocal Analysis, FBI transform techniques.



Partial Data Quasilinear Elliptic Equation

Theorem (Kian–Krupchyk–U, 2020) Let γ1, γ2 satisfy the conditions
above.

ΛΓ
γ1
(λ+ f ) = ΛΓ

γ2
(λ+ f )

for all f sufficiently small with supp f ⊂ Γ and all λ ∈ Σ ⊂ C that
has a limit point in C. Then γ1 = γ2.
Remark. We also established similar partial data results for the semi-
linear conductivity equation ∇ · (γ(x , u)∇u) = 0.
Remark. An analog of these partial data results is still not known
in the case of the linear conductivity equation in dimensions n ≥ 3.
This is a major open problem in the field! Non-linearity helps!



Completeness

The proof of the theorem uses the ideas of the following lemma:

Lemma (Krupchyk–U, 2019) Let h ∈ L1(Ω) and∫
Ω
h∇u · ∇v = 0

for all u, v satisfying ∆u = ∆v = 0 on Ω and supp u.v |∂Ω ⊂ Γ. Then
h = 0.



Quasilinear Conductivities

{
div(γ(x , u,∇u)∇u) = 0 in Ω,

u = f on ∂Ω.

0 < γ(x , 0, 0) ∈ C∞(Ω̄) and the map (τ, z) → γ(·, τ, z) is holomorphic with
values in C 1,α(Ω̄), 0 < α < 1.

Λγ(f ) = γ(x , u,∇u)
∂u

∂ν
|∂Ω

where ν is the unit outer normal.
Theorem (Carstea–Feizmohammadi–Kian–Krupchyk–U, 2021) Let n ≥ 3, under

the assumptions above, if
Λγ1 f = Λγ2 f

for all f sufficiently small. Then γ1 = γ2.



Idea of the proof

Letting λ = (ρ, µ) ∈ C× Cn, we write by Taylor’s formula,

γj(x , λ) =
∞∑
k=0

1
k!

γ
(k)
j (x , 0;λ, . . . , λ︸ ︷︷ ︸

k times

), x ∈ Ω, j = 1, 2.

Here γ
(k)
j (x , 0) is the kth differential of the holomorphic function λ 7→ γj(x , λ)

at λ = 0, which is a symmetric tensor of rank k, given by

γ
(k)
j (x , 0;λ, . . . , λ) =

n∑
j1,...,jk=0

(∂λj1
. . . ∂λjk

γj)(x , 0)λj1 . . . λjk , x ∈ Ω.

It suffices to prove that

γ
(k)
1 (·, 0) = γ

(k)
2 (·, 0) in Ω.



Sketch of Proof

When m = 1, the result follows from a polarization trick and the fact that

span{γ0∇v1 · ∇v2 : vj ∈ C∞(Ω),∇ · (γ0∇vj) = 0, j = 1, 2}

is dense in L2(Ω). (Sylvester–U, 1987, Krupchyk–Lassas–Siltanen, 2011)

When m ≥ 2, we observe that there are at least four solutions in our integral
identity and we use crucially this observation.

To explain the idea, let m = 2. We need to show that if

∑
(l1,l2,l3)∈π(3)

n∑
j,k=1

∫
Ω

T jk(x)∂xj ul1∂xkul2∇ul3 · ∇u4dx = 0,

for all ul ∈ C∞(Ω), l = 1, . . . , 4 solving the conductivity equation

∇ · (γ0∇ul) = 0 in Ω,

then T = 0 in Ω.



Quasilinear anisotropic conductivities in dimension 2

Let A(x , ρ, µ) = (ajl(x , ρ, µ))2×2 be an anisotropic quasilinear conductivitiy.
Consider the boundary value problem{

∇ · (A(x , u,∇u)∇u) = 0 in Ω,

u = f on ∂Ω.

Theorem (Liimatainen-Wu, 2024)
Let n = 2, A1 and A2 be quasilinear anisotropic conductivities such that ΛA1(f ) =
ΛA2(f ), for all f in C 2,α(∂Ω) small, then there exists a W 1,2 diffeomorphism Φ
which is the identity map on the boundary such that A2 = HΦ(A1) where

(HΦA) (x , t) =
(DΦ(x))TA(x , t)(DΦ(x))

|DΦ| ◦ Φ−1(x)

.



Idea of the proof

First reduce the problem to isotropic case using isothermal coordinates, and
consider isotropic quasilinear conductivity γ(x , u,∇u);

then by higher order linearization, reduce the proof of

∂m−1
λ γ1(x , 0) = ∂m−1

λ γ2(x , 0), λ = (ρ, µ) ∈ C× Cn

to the following density result, which is the same as in the isotropic problem in
dimenision n ≥ 3:

Proposition
Let m ∈ N, if T is a continuous function on Ω̄ with values in the space of

symmetric tensors of rank m such that∑
(l1,...,lm+1)∈π(m+1)

∑2
j1,...,jm=0

∫
Ω
T j1...jm (x) (ul1 ,∇ul1)j1

. . . (ulm ,∇ulm )jm ∇ulm+1 · ∇um+2dx = 0

for all ul ∈ C∞(Ω̄) solving ∇ · (γ0∇ul) = 0 in Ω, l = 1, . . . ,m+ 2. Then T = 0
in Ω. Here (ul ,∇ul)j , j = 0, 1, 2 stands for the jth component of the vector
(ul , ∂x1ul , . . . , ∂xnul), and γ0 = γ(x , 0).
Remark. Let T j1...jm = ∂λ1 . . . ∂λmγ, the theorem follows from the proposition.



Idea of the proof

To prove the main proposition, we first do boundary determination to show
T vanish up to infinite order on the boundary, using singular solutions with
prescribed singularity close to the boundary outside Ω:

u(x) = log |x − zσ|+ w(x − zσ)

where zσ = x0 + σν for some small σ > 0.

Next, we use Bukhgeim’s CGO solutions (phases having nondegenerate critical
points), as well as limiting Carleman weights (phases having no critical point)
in the integral identity. Then we apply the stationary phase method.

An example of Bukhgeim’s CGO solutions:

u =
1
√
γ
e±z2/h(1 + rh), ||rh||L2 = O(h

1
2+ϵ)

An example of limiting Carleman weights defined by Kenig-Sjöstrand-U:

ũ =
1
√
γ
e±(z2+z)/h(1 + r̃h), ||r̃h||L2 = O(h)



Idea of the proof

When m = 1, The integral identity in the proposition becomes

0 =
∑

(l1,l2)∈π(2)

n∑
j=0

∫
Ω

T j(x) (ul1 ,∇ul1)j ∇ul2 · ∇u3dx

Let u2 = 1, we get ∫
Ω

T 0(x)∇u1 · ∇u2dx = 0

for any u1, u2 solving ∇ · (γ0∇u) = 0 in Ω. Integrate by parts, we could obtain∫
uv∇ ·

(
γ0∇

(
T 0

γ0

))
= 0

Denote A := ∇ ·
(
γ0∇

(
T0

γ0

))
. Substituting Bukhgeim’s CGO solutions:

u =
1
√
γ
ez

2/h(1 + rh), v =
1
√
γ
e−z̄2/h(1 + r̃h)

We have ∫
e(z

2−z̄2)/h A

γ0
(1 + rh + r̃h + rh r̃h) = 0.



Idea of the proof

Recall the stationary phase method: for any u(x) ∈ C∞
0 (R2), we have the

following asymptotic expansion for the oscillatory integral

1
2πh

∫
R2

e i(z
2−z̄2)/4hu(z)dz =

N−1∑
k=0

hk

k!

((
1
i
(∂̄2 − ∂2)

)k

u

)
(0, 0) + SN(u, h)

where
|SN(u, τ)| ≤

ChN

N!

∑
|α+β|≤3

∥∥∥∂α
x ∂

β
y (∂x∂y )

N u
∥∥∥
L1

Therefore, for the integral identity∫
e(z

2−z̄2)/h A

γ0
(1 + rh + r̃h + rh r̃h) = 0,

we have that the principal term is of order h, while the other terms can be
shown to have higher order in h using the estimates we have for rh, r̃h. Since
the coefficient in the principal term is A/γ0, by letting h → 0, we conclude that
A = 0, which implies T 0 = 0.
For the other terms, in a similar way we can show that T 1 = T 2 = 0.
The proof for m ≥ 2 follows a similar way.


