Introduction to Inverse Problems for Transport Equations

Ru-Yu Lai

School of Mathematics University of Minnesota

June 4, 2024

CBMS Conference: Inverse Problems and Nonlinearity, Clemson

Outline

2 Inverse Problems for the Linear Transport Equation

Inverse Problems for the Nonlinear Transport Equation

What is an inverse problem?

In general, an inverse problem is to extract knowledge from data.

X-ray tomography

- Forward problem: determine the X-ray projection data from a body whose internal structure we know precisely.
- **Inverse problem:** reconstruct the inner structure of an unknown body from the knowledge of X-ray data from different directions and positions. ¹

2D example:

Figure: Cause: the slice of a walnut (left); Effect: the X-ray data (right).

¹ Figure 1. J. L. Mueller-S. Siltanen, *Linear and nonlinear inverse problems with practical applications*, 2012

CT = X-ray tomography

cross-section (2D) of the human body is scanned by X-ray beams. The X-ray beam is attenuated when passing through the body.

X-ray

 I_0 density of incoming X-ray.

How does the intensity change during the propagation?

Beer's law

The relative intensity loss of X-ray is proportional to the distance it travels.

I(x) – intensity of X-ray along the beam line L at point x.

CT (square body)

Line integrals of σ

reconstruction of σ

Inverse Problems in Imaging (inverse v.s. direct)

Direct problem:

Input signal
$$\implies$$
 A \implies Output signal =?

Inverse problem:

$$\boxed{\text{Input signal}} \Longrightarrow \boxed{A = ?} \Longrightarrow \boxed{\text{Output signal}}$$

e.g.

X-ray beam
$$L \implies \sigma =? \implies \int_L \sigma(x) dx$$

Outline

2 Inverse Problems for the Linear Transport Equation

Inverse Problems for the Nonlinear Transport Equation

Transport of photons/particles (A general model)

We consider the density distribution of particles

at a position x with velocity v satisfying

Transport Equation

$$v \cdot \nabla_x f(x, v) + \sigma f(x, v) = Q(f)(x, v)$$

- Q(f) collision operator. Specific form of Q will be discussed later.
- σ the absorption coefficient which reflects the rate of particles being absorbed by the media

Linear Boltzmann equation - Radiative transfer equation (RTE) For example, consider the stationary case, let $f \equiv f(x, v)$ satisfy the linear Boltzmann equation:

$$v \cdot \nabla_{x} f(x, v) = -\underbrace{\sigma f(x, v)}_{Absorption+scattering \ Losses} + \underbrace{\int_{\mathbb{S}^{n-1}} \mu(x, v', v) f(x, v') dv'}_{Scattered \ into \ v}$$

where

$$Q(f) \equiv Kf(x, v) = \int \mu(x, v', v) f(x, v') dv'.$$

▶ $\mu(x, v', v)$: scattering phase function models the probability that the particle with an initial direction v' will being scattered into a direction v at the position x.

Figure: A path due to multiple scattering in tissue. Courtesy to "Diffuse optics: Fundamentals and tissue applications" by R. C. Mesquita and A. G. Yodh

Ru-Yu Lai (UMN)

Inverse transport problems

Inverse problems for transport equations

Stationary RTE:

$$v \cdot \nabla_x f(x, v) + \sigma f(x, v) = \int_{\mathbb{S}^{n-1}} \mu(x, v', v) f(x, v') dv'.$$

Inverse Problem: Can we recover medium properties σ and μ ?

Inverse problems

▶ When µ = 0, one gets Beer's law:
I(x) – intensity of X-ray along the beam line L at point x.

Beer's law:
$$\frac{dI}{I} = -\sigma(x)dx$$

 $-\int_{L} \sigma(x) dx = \ln I(x) \Big|_{\text{source:}x_{0}}^{\text{receiver:}x_{1}} = \underbrace{\ln(I_{1}/I_{0})}_{\text{source:}x_{0}}$

Thus, one can recover σ from inverting the X-ray transform.

When μ ≠ 0, Question: How do we recover both σ and μ from boundary measurements?

Measurements

The incoming and outgoing measurements:

More precisely, we denote the **Albedo operator** A, which maps the incoming conditions to the outgoing radiation:

 $\mathcal{A}: f|_{\Gamma_{-}} \mapsto f|_{\Gamma_{+}}.$

Here $\Gamma_{\pm} = \{(x, v) \in \partial\Omega \times \mathbb{S}^{n-1} : \pm v \cdot n(x) > 0\}$, and n(x) is the outward unit normal to Ω at point $x \in \partial\Omega$.

Ru-Yu Lai (UMN)

Inverse transport problems

Inverse transport problems

Let Ω be an open bounded and convex domain in \mathbb{R}^n , $n \ge 2$, with smooth boundary. Let $f \equiv f(x, v)$ satisfy

$$\begin{cases} v \cdot \nabla_{x} f + \sigma f = Kf \text{ in } \Omega \times \mathbb{S}^{n-1}, \\ f = f_{-} \text{ on } \Gamma_{-}. \end{cases}$$

► The forward problem is well-posed by assuming for example that $\int \mu(x, v', v) dv' < \sigma$.

Inverse Problem: Recover absorption coefficient $\sigma(x, v)$ and the scattering coefficient $\mu(x, v', v)$ from \mathcal{A} .

Previous results on RTE

The following is only a partial list of earlier results.

Uniqueness: $(\sigma = \tilde{\sigma}, \ \mu = \tilde{\mu} \text{ if } \mathcal{A} = \tilde{\mathcal{A}})$

- ► [Choulli-Stefanov 1996]: For $n \ge 3$, uniqueness for σ and μ and n = 2 uniqueness for σ .
- [Stefanov-Uhlmann 2003]: For n = 2, uniqueness for σ and μ provided that μ is small.

Stability: $(\|\sigma - \tilde{\sigma}\|, \|\mu - \tilde{\mu}\| \lesssim \|\mathcal{A} - \tilde{\mathcal{A}}\|_*^{\beta}, \beta > 0)$

- [Wang 1999]: $n \ge 3$, assume $\mu = \mu(v', v)$.
- ▶ [Bal-Jollivet 2008]: $n \ge 3$, consider general μ .
- [Stefanov-Uhlmann 2003]: n = 2.

Non uniqueness

For $\sigma \equiv \sigma(x, v)$, there is **no uniqueness**. We let

$$\tilde{\sigma}(x,v) = \sigma(x+p(x,v)v,v)$$

for $(x + p(x, v)v, v) \in \Omega \times \mathbb{S}^{n-1}$ and p(x, v) is a nontrivial continuous function. Then

 $(\sigma, 0)$ and $(\tilde{\sigma}, 0)$

produce the same albedo operators. However, $\sigma \neq \tilde{\sigma}$.

To see this, when $\mu = 0$, the solution to $v \cdot \nabla_x f + \sigma f = 0$ with boundary data $f = f_-$ on Γ_- is

$$f(x,v) = e^{-\int_0^{\tau_-(x,v)} \sigma(x-sv,v)ds} f_-$$

for $(x, v) \in \Omega \times \mathbb{S}^{n-1}$.² Therefore, it common to consider $\sigma(x)$ or $\sigma(x, |v|)$. ${}^{2}\tau_{-}(x, v)$ is the backward travel time at position *x* with velocity *v*, i.e.,

$$\tau_{-}(x,v) = \max\{s > 0 : x - sv \in \partial\Omega\}.$$

Inverse transport problems

Some approaches to solve inverse transport problems:

Singular decomposition of the kernel of the albedo operator.

٠

• **Carleman estimate**: an L^2 weighted estimate.

Decomposition of transport solutions

Let
$$\phi \in C_c^{\infty}(\Gamma_-)$$
.

$$\begin{cases}
\nu \cdot \nabla_x f + \sigma f = Kf \quad \text{in } \Omega \times \mathbb{S}^{n-1}, \\
f = \phi \quad \text{on } \Gamma_-.
\end{cases}$$

Fix $(x_0, v_0) \in \Gamma_-$. Decompose the solution of the transport equation as

$$f(x, v; x_0, v_0) = f_1 + f_2 + f_3,$$

where $f_1 \equiv f_1(x, v; x_0, v_0)$ (ballistic term) as

$$f_1(x,v) = e^{-\int_0^{\tau_-(x,v)} \sigma(x-tv,v)dt} \phi(x-\tau_-(x,v)v,v)$$

solves

$$\begin{array}{ll} \nu \cdot \nabla f_1 + \sigma f_1 = 0, & \Omega \times \mathbb{S}^{n-1}, \\ f_1 = \phi, & \Gamma_-. \end{array}$$

And, $f_2 \equiv f_2(x, v; x_0, v_0)$ as

$$f_2(x,v) = \int_0^{\tau_-(x,v)} e^{-\int_0^s \sigma(x-tv)dt} \int_{\mathbb{S}^{n-1}} \mu(x-sv,v',v) f_1(x-sv,v')dv'ds$$

solves

• Knowledge of \mathcal{A} is equivalent to that of $f(x, v; x_0, v_0)$ for $(x, v) \in \Gamma_+$. When $f|_{\Gamma_-} = \delta(x - x_0)\delta(v - v_0)$, f_1 is more singular than $f_2 + f_3$. In $n \ge 3$, f_2 is more singular than f_3 .

Uniqueness results

Theorem (Choulli-Stefanov 1996)

In $n \ge 2$, knowledge of \mathcal{A} implies $f_1(x, v; x_0, v_0)$ on $\Gamma_+ \times \Gamma_-$. Then $\sigma(x)$ is uniquely determined. In $n \ge 3$, knowledge of \mathcal{A} implies that of $f_2(x, v; x_0, v_0)$ on $\Gamma_+ \times \Gamma_-$. Then $\mu(x, v', v)$ can be uniquely determined.

In particular, σ is reconstructed from

$$f_1(x,\nu;x_0,\nu_0)|_{(x,\nu)\in\Gamma_+}=\int_0^{\tau_+(x_0,\nu_0)}e^{-\int_0^{\tau_-(x,\nu)}\sigma(x-s\nu)ds}\delta(x-x_0-t\nu)\delta(\nu-\nu_0)dt,$$

and μ is reconstructed from

$$f_{2}(x,v;x_{0},v_{0})|_{(x,v)\in\Gamma_{+}} = \int_{0}^{\tau_{-}(x,v)} \int_{0}^{\tau_{+}(x_{0},v_{0})} e^{-\int_{0}^{\eta} \sigma(x-tv)dt - \int_{0}^{\tau_{-}(x-\eta v,v_{0})} \sigma(x-\eta v-tv_{0})dt} \\ \mu(x-\eta v,v_{0},v)\delta(x-x_{0}-\eta v-tv_{0})dtd\eta.$$

Carleman estimate: time-dependent RTE

We consider the following initial boundary value problem for T > 0 large.

$$\begin{cases} \partial_t f + v \cdot \nabla_x f + \sigma f &= K(f) \quad \text{in } (0, T) \times \Omega \times \mathbb{S}^{n-1}, \\ f &= f_0 \quad \text{on } \{0\} \times \Omega \times \mathbb{S}^{n-1}, \\ f &= f_- \quad \text{on } (0, T) \times \Gamma_-. \end{cases}$$

We denote the measurement operator by

 $\mathcal{A}: (f_0, f_-) \mapsto f|_{(0,T) \times \Gamma_+}.$

Inverse Problem: Recover $\sigma(x, v)$ and $\mu(x, v', v)$ from \mathcal{A} .

Carleman estimate

Define the operator

$$P = \partial_t + v \cdot \nabla_x + \sigma - K.$$

Let φ be a weight function and V be some subset of \mathbb{S}^{n-1} .

Theorem (Carleman Estimate, Machida-Yamamoto 2014) For some constant $c_0 > 0$ independent of *s*, then we have

$$s \int_{\Omega \times V} |f(0, x, v)|^2 e^{2s\varphi(0, x)} dx dv + s^2 \int_0^T \int_{\Omega \times V} |f|^2 e^{2s\varphi} dx dv dt$$

$$\leq c_0 s \int_0^T \int_{\Gamma_+} (v \cdot n(x)) |f|^2 e^{2s\varphi} d\sigma dt + c_0 \int_0^T \int_{\Omega \times V} |Pf|^2 e^{2s\varphi} dx dv dt,$$

provided that *s* is sufficiently large and $f|_{t=T} = 0$.

- > The role of parameter *s* is used to control the nonessential terms.
- ► The initial data contains the to-be-recovered coefficients.

Carleman estimate: inverse source problem

[Inverse Source Problem: Recover source] Let \tilde{f} satisfies

$$\partial_t \tilde{f} + v \cdot \nabla_x \tilde{f} + \sigma \tilde{f} = K \tilde{f} + \underbrace{S_0(x, v) S_1(t, x, v)}_{source}, \quad \text{with } \tilde{f}(0, x, v) = 0.$$

We observe that

$$\partial_t \tilde{f}(0,x,v) = S_0(x,v)S_1(0,x,v).$$

The initial condition $\partial_t \tilde{f}(0, x, v)$ is connected with $S_0(x, v)$ (unknown) by S_1 (known).

If $S_1(0, x, v)$ is suitably controlled, then one expects to recover $S_0(x, v)$.

Applications of Carleman estimate

We choose smooth cut-off function χ in time t so that

$$\chi(t) = \begin{cases} 1, & 0 \le t \le T - 2\varepsilon, \\ 0, & T - \varepsilon \le t \le T. \end{cases}$$

We consider the function

$$F(t, x, v) = \chi(t)\partial_t \tilde{f}(t, x, v),$$

which satisfies $\partial_t F + v \cdot \nabla_x F + \sigma F = KF + S$ with $F|_{t=T} = 0$. Applying the Carleman estimate to *F* gives

$$s\int_{\Omega\times V} |\underbrace{\partial_{t}\tilde{f}(0,x,v)}_{S_{0}(x,v)S_{1}(0,x,v)}|^{2}e^{2s\varphi(0,x)}dxdv \leq Data+l.o.t.$$

From this, one can derive the L^2 estimate of S_0 :

$$\|S_0\|_{L^2(\Omega\times V)} \leq C \|\partial_t \tilde{f}\|_{L^2((0,T)\times \Gamma_+)}.$$

For this case, "single measurement" is sufficient.

Ru-Yu Lai (UMN)

[Inverse Coefficient Problem: Recover σ]

Idea: Transform this problem into the inverse source problem.

To recover the unknown σ_j , suppose μ is given. Let f_j , j = 1, 2, be the solution to

$$\partial_t f_j + v \cdot \nabla_x f_j + \sigma_j f_j = K f_j \text{ with } f_j|_{t=0} = f_0 \neq 0.$$

Let $\tilde{f} = f_1 - f_2$. We write

$$\partial_t \tilde{f} + v \cdot \nabla_x \tilde{f} + \sigma_1(x, v) \tilde{f} = K \tilde{f} - \underbrace{(\sigma_1 - \sigma_2)(x, v) f_2(t, x, v)}_{source}$$

Thus, Carleman estimate can give the desired stability estimate for $(\sigma_1 - \sigma_2)$.

- Similarly, we can also recover μ provided that σ is given.
- > This approach can only recover time-independent coefficient.
- Compared to the singular decomposition method (only recover σ(x, |v|)), applying Carleman estimate can determine σ(x, v) due to the extra knowledge of initial data.

Outline

2 Inverse Problems for the Linear Transport Equation

3 Inverse Problems for the Nonlinear Transport Equation

We want to study the nonlinear transport equation:

$$\partial_t f + v \cdot \nabla_x f + \sigma f + Nonlinearity = K(f)$$

To understand what kind of nonlinear term can be recovered.

Inverse problems for semilinear transport equations

We consider the following initial boundary value problem for T > 0 large.

Nonlinear Transport Equation:

$$\begin{cases} \partial_t f + v \cdot \nabla_x f + \sigma f + N(x, v, f) &= K(f) & \text{in } S\Omega_T, \\ f &= f_0 & \text{on } \{0\} \times S\Omega, \\ f &= f_- & \text{on } \partial_- S\Omega_T. \end{cases}$$

Here

$$S\Omega = \Omega \times \mathbb{S}^{n-1}, \quad S\Omega_T = (0,T) \times \Omega \times \mathbb{S}^{n-1}, \quad \partial_- S\Omega_T := (0,T) \times \Gamma_-.$$

The scattering operator $K(f)(t, x, v) = \int_{\mathbb{S}^{n-1}} \mu(x, v, v') f(t, x, v') dv'$. Suppose that the absorption and scattering coefficients σ , μ satisfy

$$0 \le \sigma(x, v) \le \sigma^0$$
, and $0 \le \mu(x, v, v') \le \mu^0$,

and

$$\int_{\mathbb{S}^{n-1}} \mu(x,v,v') \, dv' \leq \sigma(x,v), \quad \text{and} \quad \int_{\mathbb{S}^{n-1}} \mu(x,v',v) \, dv' \leq \sigma(x,v).$$

Ru-Yu Lai (UMN

Nonlinearity Case 1:

$$N(x,v,z) = \sum_{k=2}^{\infty} q^{(k)}(x,v) \frac{z^k}{k!},$$

which converges in the $L^{\infty}(S\Omega)$ topology with $q^{(k)}(x, v) \in L^{\infty}(S\Omega)$.

Case 2:

$$N(x, v, f) = q(x, v)N_0(f),$$

where N_0 satisfies

$$||N_0(f)||_{L^{\infty}(S\Omega_T)} \leq C_1 ||f||_{L^{\infty}(S\Omega_T)}^{\ell},$$

and

$$\|\partial_z N_0(f)\|_{L^{\infty}(S\Omega_T)} \leq C_2 \|f\|_{L^{\infty}(S\Omega_T)}^{\ell-1}, \quad \ell \geq 2.$$

When $\ell = 2$, e.g. $N_0(f) = f \int f dv'$, photoacoustic tomography with nonlinear absorption effect [Ren-Zhang '18, Lai-Ren-Zhou '21, Stefanov-Zhong '22].

Ru-Yu Lai (UMN)

Well-posedness and inverse problems

Theorem (L.-Uhlmann-Zhou 2023)

Suppose that σ and μ satisfy the above conditions. Then there exists a small parameter $0 < \delta < 1$ such that for any $(f_0, f_-) \in L^{\infty}(S\Omega) \times L^{\infty}(\partial_-S\Omega_T)$ with $||f_0||_{L^{\infty}(S\Omega)} \leq \delta$, $||f_-||_{L^{\infty}(\partial_-S\Omega_T)} \leq \delta$, the IBVP problem has a unique small solution $f \in L^{\infty}(S\Omega_T)$ satisfying

$$||f||_{L^{\infty}(S\Omega_T)} \leq C(||f_0||_{L^{\infty}(S\Omega)} + ||f_-||_{L^{\infty}(\partial_-S\Omega_T)}),$$

where the positive constant C is independent of f, f_0 and f_- .

We denote the measurement operator by

$$\mathcal{A}_{\sigma,\mu,N}:(f_0,f_-)\mapsto f|_{\partial_+S\Omega_T}\in L^\infty(\partial_+S\Omega_T).$$

Inverse Problem: Can one determine σ , μ , N from $\mathcal{A}_{\sigma,\mu,N}$?

Ru-Yu Lai (UMN)

Previous results for transport-type equations

Linear transport equation:

Uniqueness [Chen, Choulli, Kawagoe, Stefanov, Uhlmann ...]

Stability [Bal, Jollivet, Machida, Monard, Yamamoto, Wang, Zhao, Zhong ...]

Carleman estimate [Bugheim, Golgeleyen, Lai, Li, Klibanov, Machida, Pamyatnykh, Yamamoto ...]

Riemannian case [Assylbekov, McDowall, Stefanov, Tamasan, Yang ...]

Nonlinear transport equation:

Two photon absorption RTE [Ren-Zhong '21, Stefanov-Zhong '22, L.-Ren-Zhou '22]

Boltzmann equation [L.-Uhlmann-Yang '21, Li-Ouyang '22, Balehowsky-Kujanpaa-Lassas-Liimatainen '22, L.-Yan '23]

Inverse problems for semilinear equations

Theorem (L.-Uhlmann-Zhou 2023)

Let Ω be an open bounded and convex domain in \mathbb{R}^n , $n \ge 2$, with smooth boundary. Suppose that σ_j , μ , N_j satisfy additional conditions regarding a fixed direction γ . If

$$\mathcal{A}_{\sigma_1,\mu,N_1}(h,0) = \mathcal{A}_{\sigma_2,\mu,N_2}(h,0)$$

for any $h \in L^{\infty}(S\Omega)$ with $||h||_{L^{\infty}(S\Omega)} \leq \delta$ for sufficiently small δ , then

 $\sigma_1(x,v) = \sigma_2(x,v)$ in $S\Omega$, $N_1(x,v,z) = N_2(x,v,z)$ in $S\Omega \times \mathbb{R}$.

- We will apply the **higher-order linearization** and **Carleman estimate**.
- Similarly, if σ is known, then μ can be recovered. Under additional assumptions, it's possible to recover both σ and μ, for instance, [Choulli-Stefanov '96, '98].

Linearization

- A classical method to study the inverse boundary value problem for nonlinear PDEs was introduced by [Isakov]. It consists of performing a first order linearization of the given nonlinear Dirichlet-to-Neumann map. This reduces the inverse problem to an inverse boundary problem for a linear equation, and thus one can employ the available results in this case.
- Recently, the higher-order linearization was introduced by [Kurylev-Lassas-Uhlmann] for nonlinear hyperbolic equations and [Lassas-Liimantainen-Lin-Salo], [Feizmohammadi-Oksanen] for nonlinear elliptic equations.

Higher-order linearization

This technique *employs nonlinearity as a tool* in solving inverse problems for nonlinear equations.

The idea is to bring several small parameters into the data and then differentiating the nonlinear equation with respect to these parameters to get a simpler linearized equation.

Some related works:

[Kurylev-Lassas-Uhlmann], [Lassas-Uhlmann-Wang],
[Chen-Lassas-Oksanen-Paternain], [Lin-Liu-Liu-Zhang],
[Lassas-Liimatainen-Lin-Salo], [Feizmohammadi- Oksanen],
[Krupchyk-Uhlmann], [Kian-Krupchyk-Uhlmann], [L.-Zhou],
[Assylbekov-Zhou], [Kang-Nakamura], [Cârstea-Nakamura-Vashisth],
[Cârstea-Feizmohammadi-Kian-Krupchyk-Uhlmann], [L.-Uhlmann-Yang],
[L.-Ren-Zhou], [Stefanov-Zhong]

Higher-order linearization

Idea: Differentiating the equation with respect to ε at $\varepsilon = 0$ leads to a simpler linear equation.

Let $f = f(t, x, v; \varepsilon h, 0)$ satisfy

$$\begin{cases} \partial_t f + v \cdot \nabla_x f + \sigma f + N(x, v, f) &= K(f) \quad \text{in } S\Omega_T, \\ f &= \varepsilon h \quad \text{on } \{0\} \times S\Omega, \\ f &= 0 \quad \text{on } \partial_- S\Omega_T. \end{cases}$$

Denote $F^{(n)} = \partial_{\varepsilon}^{n}|_{\varepsilon=0} f(t, x, v; \varepsilon h, 0).$

 1^{st} order linearization: recover σ or/and μ

$$\begin{cases} \partial_t F^{(1)} + v \cdot \nabla_x F^{(1)} + \sigma F^{(1)} &= K(F^{(1)}) & \text{in } S\Omega_T, \\ F^{(1)} &= h & \text{on } \{0\} \times S\Omega, \\ F^{(1)} &= 0 & \text{on } \partial_- S\Omega_T. \end{cases}$$

Higher-order linearization

Higher order linearization: recover nonlinear term N with known σ and μ .

$$\begin{cases} \partial_t F^{(2)} + v \cdot \nabla_x F^{(2)} + \sigma F^{(2)} - K(F^{(2)}) &= -\partial_{\varepsilon}^2|_{\varepsilon=0} N(f) & \text{in } S\Omega_T, \\ F^{(2)} &= 0 & \text{on } \{0\} \times S\Omega, \\ F^{(2)} &= 0 & \text{on } \partial_- S\Omega_T. \end{cases}$$

Key: View the nonlinear term as a source

Carleman estimates

Theorem (Machida-Yamamoto '14, L.-Uhlmann-Zhou '23)

Let $f \in H^1(0,T; L^2(S\Omega))$ satisfy $v \cdot \nabla_x f \in L^2(S\Omega_T)$ and f(T, x, v) = 0. Denote $V := \{v \in \mathbb{S}^{n-1} : \gamma \cdot v \ge \gamma_0 > 0\}$ and $B(v) = \gamma \cdot v - \beta$, $0 < \beta < \gamma_0$. Then there exist positive constants *C* and s_0 so that for all $s \ge s_0 > 0$, we have

$$s\|f(0,x,v)e^{s\varphi(0,x)}\|_{L^{2}(\Omega\times V)}^{2}+s^{2}\|Bfe^{s\varphi}\|_{L^{2}(S\Omega_{T})}^{2}$$

$$\leq C\|(\partial_{t}f+v\cdot\nabla_{x}f+\sigma f-Kf)e^{s\varphi}\|_{L^{2}(S\Omega_{T})}^{2}+s\|fe^{s\varphi}\|_{L^{2}(\partial_{+}S\Omega_{T})}^{2}.$$

The Carleman weight takes the form $\varphi(t, x) = -\beta t + \gamma \cdot x$ for some fixed vector γ .

Sketch of proof

For simplicity, let's take

$$N(x,v,f) = q(x,v)f^2.$$

Assume that both σ and μ are known now. The 2^{nd} order linearization gives

$$\partial_t F^{(2)} + v \cdot \nabla_x F^{(2)} + \sigma F^{(2)} - K(F^{(2)}) = -2q(x,v)(F^{(1)})^2(t,x,v).$$

Applying Carleman estimate yields

$$s\int_{\Omega\times V} \left|\underbrace{\partial_t F^{(2)}(0,x,v)}_{q(x,v)(F^{(1)})^2}\right|^2 e^{2s\varphi(0,x)} dxdv \leq Data.$$

Hence the stability estimate of q in L^2 norm is derived, which implies the unique determination of q.

Thank you for your attention.